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ABSTRACT O /
This paper studies the cutting by a wedge of longitudinally stiffened plates for application
to the grounding resistance of single hull and double hull ships. Two types of ship hull
designs were used as prototypes for the development of small scale models: a
conventional longitudinally stiffened Single Hull (SH) and the Unidirectionally Stiffened
Double Hull (USDH) design.

To model the cutting experiments. the complex deformation patterns observed in the
damaged specimens were simplified to obtain a closed-form upper bound for the steady-
state cutting force required for the USDH specimen. An existing closed-form upper
bound solution, developed by Wierzbicki and Thomas, for the wedge cutting initiation
force of a single plate was applied to the longitudinally stiffened single hull specimens by
smearing the geometry to obtain an equivalent thickness single plate.

A total of eleven cutting experiments were conducted using six different wedge
geometries.

The USDH steady-state cutting force solution was 6% above to 12% below the
experimental mean steady-state force. The absolute average error is 5%.

The theoretical work required in cutting (at a distance of 0.25 m) of Wierzbicki and
Thomas' initiation solution was 12% above to 4% below compared to the SH
experiments. The absolute average error is 6%.

The results show that simplified closed-form solutions can be developed to estimate the
force required in tearing a model that represents, with added realism, a ship hull in a
grounding accident.

Thesis Supervisor: Dr. Tomasz Wierzbicki
Title: Professor of Applied Mechanics. Department of Ocean Engineering

2



ACKNOWLEDGMENT

I would like to extend my gratitude to the U.S. Navy for the opportunity to further
my education. This has been the fulfillment of a long-held goal.

A very special thanks are due to Professors Wierzbicki and McClintock for their
patience and support, and for the many hours spent in their offices guiding me through
this research. I have gained much insight into problem solving and engineering in the
year I have worked them. They are truly leaders in their fields.

Thanks to the experimental team, Mohamed Yahiaoui, Pat Little, and Karrie
Trauth for their help in the lab. A special thank you to Mohamed Yahiaoui for his
leadership of the experimental team. He laid the groundwork, and graciously handed over
to me his research efforts into the USDH model construction techniques.

Thanks to Teresa Coates for administrative support. Behind every organization,
there is that one person that keeps things going. She did it to perfection.

I could not have done the experiments without the help of Arthur and Steve
Rudolph. Their timely response and good ideas always helped save the day. They are not
just machinists, they are artisans. They should take deep pride in the quality of their work.

Thanks to my 13A classmates for three of the most rewarding years in my naval
career. Never again, could there be such a concentration of type-A personalities in one
class!

To my office mate, Francis Colberg: thanks for listening. Over the last three years,
we solved half of the world's problems and identified the other half.

I would not have been here had it not been for the support and mentoring of Jim
Wicks, CDR, USN (retired). MIT was everything he said it was, and more.

My deep love and respect to my parents. They instilled in me perseverance and
commitment. I could not have made it this far without these and the many other things
they taught me.

Finally, and most importantly, to my family: We made it! I would not have
survived this experience without the love, kindness, understanding, and good humor that
my wife. Shona, unselfishly gave for three years, and the smiles and unconditional love
that my boys, Alexander and Nicholas, always had waiting for me. Words cannot
describe the love I have for my family.

3



Dedicated to

Shona. Alexander, and Nicholas.



Table of Contents

List of Figures 9

List of Tables 14

Nomenclature is

Chapter 1. Background and Research Objectives 19

1.1 Background 19

1.2 Grounding Scenario 20

1.3 Theoretical Background of Ship Hull Damage
Prediction Due to Grounding 21

1.4 Evolution of MIT Plate Cutting Experiments 27

1.5 Research Objectives 29

Chapter 2. Experimental Models and Apparatus 31

2.1 Ship Structural Design Considerations 31

2.2 Determination of Scale Model Geometry 33

2.2.1 Double Hull Model 33

2.2.2 Single Hull Model 35

2.3 Fabrication of the Hull Models 38

2.3.1 Welding Technique Selection 39

2.4 Wedge Geometry and Fabrication 41

2.5 Experimental Apparatus 42

Chapter 3. Experimental Results and Observations 53

3.1 Preparation of the Instron Universal Test Machine 53

5



3.2 Summary of Experimental Results 54

3.3 Discussion of Experimental Results 55

3.3.1 Double Hull Tests 55

3.3.2 Single Hull Tests 59

Chapter 4. Theoretical Models and Comparison to Experimental Results 76

4.1 General Solution Approach 76

4. 1.1 USDH Solution 81

4.1. 1.1 Internal Work Rate in Bending 84

4.1.1.2 Internal Work Rate in Membrane Stretching 84

4.1.1.3 Internal Work Rate in Membrane Shear 86

4.1.1.4 Concertina Tearing Force 87

4.1.1.5 Contribution of Friction 88

4.1.1.6 Total Steady State Cutting Force 89

4.2 Application of Existing Solutions to the Longitudinally Stiffened
Single Hull 90

4.2.1 Wierzbicki and Thomas' Plate Tearing Initiation Solution 91

4.2.2 Zheng and Wierzbicki's Steady-State Plate Cutting Solution 92

4.3 Comparison of Experiments to Theory 92

4.3.1 USDH Comparison 92

4.3.2 Single Hull Comparison 96

4.4 Parametric Studyof the USDH Steady-state Cutting Force Solution 98

6



4.5 Alternative Failure Modes Assuming USDH Weld Failure 99

Chapter 5. Conclusions and Recommendations for Future Work 122

5.1 Conclusions 122

5.2 Recommendations for Future Work 124

References 128

Appendix A. Operation of the Test Equipment 131

A. 1 Instron Universal test Machine Switch Lineup 131

A.2 Data Acquisition Program Lineup 132

A.3 Equipment Calibration 133

A.3.1 Setting the Chart Speed 134

A.4 Starting the Experiment 134

A.5 Data Reduction 135

Appendix B. Supporting Calculations 137

B.1 Calculation of Displacements uo and ub 137

B.2 Evaluation of the USDH Steady-State Cutting Force Equation 140

B.3 Fully Plastic Torsion of the Stiffener and Bending of the Stiffener
and Plate 141

B.3.1 Fully Plastic Torsion of the Stiffener 142

B.3.2 Fully Plastic Bending Moment of the Stiffener, Plate, and
Stiffener/Plate Combination 144

Appendix C. Tensile Test Results 149

Appendix D. Lazy-T Test Results 158

7



D.I Purpose 158

D.2 Limit Load Calculation 158

D.3 Test Results 160

D.4 Lazy-T Test Conclusions 161

8



List of Figures

1.1 Plate Cutting by a Wedge 30

2.1 Concept of Unidirectionally Stiffened Double Hull (USDH) and Single Hull
(SH) VLCC Midship Sections 44

2.2 USDH Model Geometry 45

2.3 T-Stiffener/Plate Combination 46

2.4 Longitudinally Stiffened Single Hull Model Geometry 47

2.5 Fillet Method of Welding the USDH Model 48

2.6 Possible Defect of Electron Beam Welding of T-Stiffener 48

2.7 Geometry of Wedges 49

2.8 Schematic of 20 kip Instron Universal Test Machine and Data
Acquisition System 50

2.9 Specimen Test Fixture 51

2.10 Wedge-to-Load Cell Adapter 52

3.1 Test No. 1 (USDH, Wedge #1, 0=45°, Sharp Tip) - Photograph and Force-
Displacement Graph 63

3.2 Test No. 2 (USDH, Wedge #2, 0=45°, 3/8 in. Radius Tip) - Photograph and
Force-Displacement Graph 64

3.3 Test No. 3 (USDH, Wedge #3, 0=-30°, Sharp Tip) - Photograph and Force-
Displacement Graph 65

3.4 Test No. 4 (USDH, Wedge #4, 0=300, 3/8 in. Radius Tip) - Photograph and
Force-Displacement Graph 66

3.5 Test No. 5 (USDH, Wedge #5, Cylindrical) - Photograph and Force-
Displacement Graph 67

9



3.6 Test No. 6 (USDH, Wedge #6, 3/4 in. Wide, 0=45°, 3/32 in. Radius Tip) -
Photograph and Force-Displacement Graph 68

3.7 Test No. 7 (SH, Wedge #1, 0=450, Sharp Tip) - Photograph and Force-
Displacement Graph 69

3.8 Test No. 8 (SH, Wedge #2, 0=450, 3/8 in. Radius Tip) - Photograph and
Force-Displacement Graph 70

3.9a Test No. 9a (SH, Wedge #3, 0=-300, Sharp Tip) - Photograph and Force-
Displacement Graph 71

3.9b Test No. 9b (SH, Wedge #3. 0=30', Sharp Tip) - Photograph and Force-
Displacement Graph 72

3.10 Test No. 10 (SH, Wedge #5, Cylindrical) - Photograph and Force-
Displacement Graph 73

3.11 Test No. 11 (SH, Wedge #6. 3/4 in. Wide, 0=45', 3/32 in. Radius Tip) -

Photograph and Force-Displacement Graph 74

3.12 Wedge Adapter Modification 75

4.1 Decoupling the Yield Locus - Actual and Idealized
(only one quadrant shown) 101

4.2 USDH Deformation Model 102

4.3 Material Element Undergoing Deformation Around Wedge 103

4.4 Plan View of USDH Wedge Cutting Process 104

4.5 Deformation Mechanisms 105

4.6 Material Element Undergoing Bending 106

4.7 Detailed Region of Membrane Stretching 107

4.8 Deformation Process for Membrane Stretching 108

4.9 Shearing of Plate for Kinematic Admissibility 109

i0



4.10 Test No. 1 (USDH, Wedge #1, 0=450, Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 110

4.11 Test No. 2 (USDH, Wedge #2, 0=450, 3/8 in. Radius Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 111

4.12 Test No. 3 (USDH, Wedge #3, 0=300, Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 112

4.13 Test No. 4 (USDH, Wedge #4, 0=30°, 3/8 in. Radius Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 113

4.14 Test No. 5 (USDH, Wedge #5. Cylindrical) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 114

4.15 Work-Displacement Graph Showing Transition from Initiation to Steady
State Cutting 115

4.16 Test No. 7 (SH. Wedge #1, 0=45°, Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 116

4.17 Test No. 8 (SH, Wedge #2, 0=45°, 3/8 in. Radius Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 117

4.18 Test No. 9b (SH, Wedge #3, 0=30°. Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 118

4.19 Test No. 10 (SH, Wedge #5, Cylindrical) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs) 119

4.20 Effect of Wedge Width on USDH Cutting Force (Equation 4.41) 120

4.21 Effect of Wedge Semi-angle on USDH Cutting Force (Equation 4.41) 120

4.22 Effect of Coefficient of Friction on USDH Cutting Force (Equation 4.41) 121

4.23 Effect of Plate Thickness on USDH Cutting Force (Equation 4.41) 121

5.1 Deformation and Fracture Modes of T-Joints 127

11



B. 1 Geometry for Calculation of Displacements u. and ub 147

B.2 Sand Heap Analogy for Stiffener 148

C.1 ASTM A370 Flat Tensile Specimen 151

C.2 Specimen 1 - Engineering Stress-Strain Curve
(t = 0.749 mm, 00 from roll axis) 152

C.3 Specimen 2 - Engineering Stress-Strain Curve
(t = 0.749 umm, 0* from roll axis) 152

C.4 Specimen 3 - Engineering Stress-Strain Curve
(t = 0.749 mm, 900 from roll axis) 153

C.5 Specimen 4 - Engineering Stress-Strain Curve
(t = 0.749 mm. 900 from roll axis) 153

C.6 Specimen 5 - Engineering Stress-Strain Curve
(t = 1.130 mm, 900 from roll axis) 154

C.7 Specimen 6 - Engineering Stress-Strain Curve
(t = 1.130 mm, 90' from roll axis) 154

C.8 Specimen 7 - Engineering Stress-Strain Curve
(t = 1.130 mm, 0* from roll axis) 155

C.9 Specimen 8 - Engineering Stress-Strain Curve
(t = 1.130 mm, 00 from roll axis) 155

C. 10 Specimen 9- Engineering Stress-Strain Curve
(t = 1.829 mm, 00 from roll axis) 156

C.1 I Specimen 10 - Engineering Stress-Strain Curve
(t = 1.829 mm, 00 from roll axis) 156

C.12 Specimen I 1 - Engineering Stress-Strain Curve
(t = 1.829 mm, 900 from roll axis) 157

C.13 Specimen 12 - Engineering Stress-Strain Curve
(t = 1.829 mm, 900 from roll axis) 157

12



D.1 T-Stiffener Geometry and Free Body Diagram 162

D.2 Bending Moment at the Web Joint 163

D.3 Lazy-T Test Results for Specimen #1 164

D.4 Lazy-T Test Results for Specimen #2 164

D.5 Lazy-T Test Results for Specimen #3 165

13



List of Tables

2.1 USDH Model Cell Size Options 35

2.2 VLCC Prototype Stiffener and Plate Dimensions 36

2.3 Stiffener/Plate Thickness Ratios for VLCC Prototype and Model 37

2.4 Single Hull Model and Plate Dimensions 38

2.5 Geometry of Wedges 42

3.1 Summary of Cutting Experiments Results 55

4.1 Comparison of USDH Experiments and Theory 95

4.2 Comparison of Single Hull Experiments and Theory 97

4.3 Force Level Comparison for Alternative USDH Failure Modes 100

5.1 Contribution of Membrane. Bending, and Friction of the USDH

Steady-State Cutting Force Solution (not including concertina tearing) 123

A. 1 Instron Universal Test Machine Switch Settings 131

B.1 USDH Steady-State Cutting Force Equation Values 141

B.2 Fully Plastic Moments of Stiffener and Plate Structural Members 146

C. 1 Tensile Test Specimen Properties 149

C.2 Tensile Test Specimen Averaged Properties 150

D. 1 T-Stiffener Dimensions 160

14



Nomenclature

Chapter1!

6, Crack opening displacement (COD)

6, Dimensionless COD parameter
a, [ Unknown exponents determined experimentally
9 Friction coefficient
(P plate tilt angle
e Wedge semi-angle
a. Material flow stress
Gy Yield stress
a, b Experimentally determined constants
A Area of deformed plate, A = i2 tan0
As Total area of tearing, As=psts
B Wedge width
C Experimentally determined dimensionless constant
E Energy per unit volume of displaced material
Fc Plate cutting force
Fss Steady-state cutting force
F1 Plate tearing force
KT Kinetic energy
1, p, Depth of penetration of wedge into plate
M0  Fully plastic bending moment
RT Resistance factor
S Energy fimction per unit length
t, t' Thickness of plating
u Distance of wedge travel
Vs Volume of displaced material, Vs=ps2 tstanO
W Total work in cutting a plate
WB Work in bending a plate
WC Work in cutting of a plate
WD Work of bending, membrane, and shear
WF Work due to friction
WS Total work to penetrate a side structure by a wedge shaped bow

Wb Rate of bending work

W. Rate of membrane work
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0 Wedge semi-angle
b Longitudinal Spacing
br Width of flange
b,, Height of web
h USDH longitudinal girder height
IM Moment of inertia of model plate and stiffener
IpM Moment of inertia of model plate
[pVLCC Moment of inertia of prototype plate
Ilvcc Moment of inertia of prototype plate and stiffener
N Number of cells in USDH model
t,t Plate thickness
tf Flange thickness
t,. Web thickness
w Effective width of test specimens

0 Wedge semi-angle

r Wedge tip radius

Chapte 4

8, Dimensionless COD parameter
6, i* stationary hinge rotation rate

Friction coefficient
A Lateral distance of USDH plate deformation

Progressive wedge cutting distance
0 Wedge semi-angle

K Curvature tensor (x,0= 1,2)
a,, a2  New angles of deformed material in USDH cutting
t11 Stationary bending hinge line 1

T12 Stationary bending hinge line 2
cave Average strain in USDH cutting model
Eb Strain in bending
eii General strain tensor (ij =1,2,3)
eh Strain in shear
EW Strain in stretching
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General stress tensor
ao Material flow stress
oT• Material flow stress of flange
ae Material flow stress of plate
aoW Material flow stress of web
(4,m1) Local coordinate system
A Cross sectional area of stiffener
AF Area of flange
Aw Area of web
b Longitudinal spacing
B Wedge width
F Total steady-state force for USDH cutting
F¢nm Concertina tearing force
F=• Instantaneous experimental force level
Fi General applied forces
F. Experimental mean force level
Fp Internal force due to plastic work
Fpf Internal force of plastic work and friction
F, Tearing force
1 Length of wedge cut
li Length of il plastic hinge line
if Final length of cut
1* Transition from initiation to steady-state cutting
map General bending moment
M. Fully plastic bending moment
N•p General force
N. Fully plastic force
R Fracture parameter (fracture toughness)
r, Radius of bending about stationary hinge l,
r, Radius of bending about stationary hinge n2
t, t, Plate thickness
teq Smeared. equivalent plate thickness
U., ub USDH model displacements
u. General displacements
V Velocity of material element

Bending work rate

External work rate
fl, Internal work rate

Membrane work rate

*h Membrane shear work rate
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Membrane stretching work rate
Wss Work in steady-state cutting
W, Work in plate tearing

EBW Electron beam welding
HAZ Heat affected zone
LBP Length between perpendiculars
NSWC Naval Surface Warfare Center
SH Longitudinally stiffened single hull
USDH Unidirectionally stiffened double hull
VLCC Very large crude carrier
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Chapter 1

Background and Research Objectives

1.1 Background

The March 1989 grounding of the supertanker, Exxon Valdez, in the pristine

waters of Prince William Sound, Alaska resulted in the loss of nearly 11 million gallons

of crude oil. This accident provided the impetus for action in the prevention of oil spills

in an effort to protect the environment. The United States Congress passed the Oil

Pollution Act of 1990 (OPA 90) mandating that petroleum product cargo ships operating

in U.S. waters %%ill be of double hull construction (or designs providing equivalent

protection) by January 1, 2015. A recent U.S. Coast Guard Report to Congress (1992)

concluded that there are currently no suitable equivalent designs to the double hull tanker

for the prevention of oil outflow due to grounding.

While a significant amount of research over the past three decades has been

conducted on the structural response of ships due to collisions, it has only been in the past

fifteen years or so that structural damage due to ship grounding accidents has been

investigated. Early work in grounding prediction has been to perform plate cutting

experiments which produced empirical formulas for the work to cut a flat plate. More

recently studies of the kinematics of plate cutting have resulted in closed form

expressions for upper bound solutions for the plate cutting force. These efforts have been

quite significant in quantifying the force required to cut a single plate, but do not account

for the effects of stiffeners and inner hull that exist in the actual geometry of ships.

In order to adequately predict the lift and drag forces in a ship undergoing a

grounding accident and the subsequent extent of damage, further research is required to
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account for the interaction of ship structural members with one another. This has

provided the motivation for the work contained herei•. This research supports the Joint

AAT-Induztr, Program on Tanker Sq&a project. The ultimate goal of the project is to

provide to the industry a computer program that will assist the ship designer/owner in

assessing the survivability (by predicting a length of damage) of a particular design or

existing ship as it undergoes a grounding accident. The overall approach to the project in

meeting this final goal is:

"• Study actual grounding accidents,

"* Determine the predominate failure modes,

"* Develop computational models of the failure modes leading to closed form solutions,

"• Conduct small scale experiments to reproduce the failure modes and validate

theoretical solutions,

"* Finally, combine the results into a damage assessment computer program.

1.2 Grounding Scenario

A grounding model of longitudinally framed Very Large Crude Carrier (VLCC)

ships has been developed by Wierzbicki, Peer, and Rady (1993). They identified four

basic mechanisms that account for the energy dissipated during the grounding:

"* global lifting of the ship against gravitational forces,

"* friction forces between the bottom hull plating and the grounding surface,

"* plastic deformation of the hull girder, and

"• forces required to fracture the hull structure.
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In grounding, the ship initially lifts and rides over the rock causing only hull indentation.

Once the force due to the weight of the ship overcomes the plating membrane strength,

the hull plating ruptures. Kinetic energy of the ship is given up to friction forces, plastic

deformation, and fracture as tearing over a length of the hull plating ensues. The work in

this thesis does not account for the lifting and subsequent rupture of the ship, but assumes

that the tearing of the hull plating is well progressed. The indentation and rupture of a

ship hull subjected to a vertical load is considered a separate mechanism and has been

investigated by Thunes (1993).

1.3 Theoretical Background of Ship Hull Damage Prediction due to

Grounding

The literature is consistent in crediting Minorsky (1959) with the pathfinding

work in the area of structural damage prediction due to ship collisions. His approach, as

summarized by Jones (1983), was to use the conservation of momentum for the inelastic

collision of two ships. Minorsky was able to develop an empirical relationship between

the loss of kinetic energy, K., and the resistance factor (relating the volume of damaged

material), R7, by correlating the data for 26 ship collisions. The straight line relation of

Equation 1.1 fits the data.

Kr = 4 1 4 .5Rr + 121900 (1.1)

Rr and K. have units of ft2-in and lton-knot2, respectively. This relationship holds quite

accurately for collisions where K. is large. However, it does not hold well for minor

collisions where K. is small and the damage is relatively minor.
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It is from this study that others have progressed into the area of grounding

damage. Vaughan (1978) developed empirical equations relating damage to absorbed

energy for ship collisions, and then extended that work for grounding damage. He

postulated that in the side collision of a ship by a wedge shaped bow there are two

independent contributions of work. Some of the work goes to distorting the volume of

material and the remaining in fracture of an area of plate. The bow is idealized as a wedge

that cuts into plating representing a side deck structure as shown in Figure 1.1. He

determined that there are six independent variables describing the physics of the problem,

with two fundamental dimensions, force and cut distance, which are expressed

functionally in Equation 1.2.

F(W,,S,E, p,1, 0,) = 0 (1.2)

Using dimensional analysis, Vaughan was able to derive a relationship for total work to

penetrate the side of a ship. Equation 1.3 holds for steel structures where the first term

relates to the work in fracturing an area of plate, A., and the second for work in bending

and stretching a volume of plate, Vs.

W, = aA, + bV, (1.3)

The constants, a and b, were determined by using experimental results of bow structures

penetrating into transversely framed side structures. Vaughan was able to measure A, and

V,, deduce b=9.5 tonf/m-mm from R, in Minorsky's formula, and thus determine a=3.4

tonf/mm. For ship collisions, Equation 1.3 correlates very well to Equation 1.1. In

grounding, the volume distortion of the plate is small, thereby setting V. and RT equal to
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zeo, giving significant discrepancies between the equations. Therefore, Vaughan was

able to find the work required in grounding by starting from the collision problem,

whereas, Minorsky's work did not intend to capture this type of damage.

Vaughan (1980) followed up his preceding work by conducting experiments to

investigate the effect of plate thickness in the absorption of energy due to the cutting by a

sharp wedge. Drop hammer experiments involved four different plate thicknesses

(1--l.867, 1.181, 0.958, and 0.752 mm), and three wedge semi-angles, 0 (5, 15, and 30

degrees). Vaughan proposed that the energy can be decomposed into work in cutting and

work in bending the plate, as in Equation 1.4. The unknown exponents and material

coefficients were to be determined experimentally.

W = SI ta + EAt = Wc +W, (1.4)

He argues that the work in cutting is dominant for small penetrations of the wedge into

the plate, and the bending energy becomes significant as the cutting length increases. This

is because Wc - I and WB - P. These wedges cut a short distance into the plate, therefore

Vaughan investigated the work in cutting only. The results of nearly 70 drop hammer

tests produce a series of graphs that allowed the investigator to determine the values for S

and a. Vaughan uses the results of Minorsky's work to determine the bending energy

term. Since the fully plastic bending moment is proportional to t2, Vaughan takes ji = 2.

Equation 1.4 takes the form

W = 55001 t-- + 4400 At' =Wc + W(1.5)
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where t is measured in millimeters, l in meters, and A is the damaged area of the plate in

square centimeters.

Several years later, Jones and Jouri (1987) conducted a new series of drop

hammer experiments which investigated the energy required to cut plates that were

thicker by as much as three times than those used by Vaughan. They also derive empirical

expressions, much like those by Vaughan, for the total work in tearing a plate. Included

are the work in cutting and distortion, as well as the work due to the friction between the

wedge and the plate, given as

W = WC + WD + WF (1.6)

where W, includes bending, membrane, and shear effects, and WF the friction effect. The

results of this study showed that for thin plates (on the order of 1.5 mm) the results

correlated well to those of Vaughan. However, for the thicker plates. Vaughan's formula

(Equation 1.5) overpredicted the absorbed energy for a given cut length for the thicker

plates. This showed that geometric similitude is not observed when going from models to

the prototype.

Lu and Calladine (1990) also conducted plate cutting experiments, but in their

setup the wedge was driven into the plate in a quasi-static manner, using a universal

testing machine rather than a drop hammer. They investigated the effects of varying the

plate thicknesses (0.7 to 2 mm), wedge semi-angles, and plate angles of attack, (p. They

derived an empirical relationship using dimensional analysis that showed the work

required to cut the plate W was a function of the distance the wedge traveled, u=lcos(ip),

the plate thickness, t, and the yield stress, a,, of the material, where the plate angle of
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attack to the wedge and the wedge semi-angle have been specified. The resulting equation

is

W=C 1o'3't 1.7 ((1.7)

valid for 5 < I/t < 150, and where C is a dimensionless constant obtained from the

experimental data. They found that C has strong dependence on the angle of attack of the

plate to the wedge, but is insensitive to the wedge semi-angle. Lu and Calladine used

their empirical formula and the results of Jones and Jouri's drop hammer experiments to

compare the value of C for steel plates. They found that this value was 35% greater for

the dynamic tests than for their quasi-static tests.

Up until this point, investigators had conducted plate cutting experiments and

then. from the data. determined an empirical relationship for the work required.

Wierzbicki noticed that there are two possible modes of failure in the plate separation

problem. There is tearing of the plate in which the wedge does not contact the plate crack

opening, and cutting in which the wedge does contact the plate crack opening. Wierzbicki

and Thomas (1993) approached the problem by developing a kinematic model of the plate

tearing initiation process by a wedge. By assuming kinematically admissible velocity and

displacement fields that satisfied the boundary conditions, they were able to derive an

upper bound closed form equation for the force required for a wedge to tear a plate.

Equation 1.8 shows the force required to tear the plate, F,, as a function of the plate

thickness, t, length of cut. 1, plate material flow stress, a., wedge geometry function, g(6),

and the dimensionless crack opening displacement parameter, -= .
t

F, = 1.67oa,(6, )0"210"4t' 6g(O) (1.8)
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where

g(0) = (cos 0)" [(tan )0Y4 +/.(tan 0)- 6] (1.9)

By plotting Equation 1.9, they were able to see that there is weak dependence on the

wedge semi-angle, 0. The function g(O) was minimized by solving for 0 in . g(o) = 0

resulting in the approximation for the tearing force as

F, = 3.28 a, (',)0.2lO.4t16 A0.4 (1.10)

valid for 10' <0 < 300, and where u is the wedge-plate friction coefficient. Comparison

of this result with the experimental work of Lu and Calladine showed very good

agreement.

The solution for the plate cutting force was carried out in much the same way by

Wierzbicki and Zheng (1993). The plate cutting force is given by

Fý = 4 a,, 10.t. g(e) (1.11)

where

g(0) = (sin 0)0°5 (cos )-l + I 1(sin ) -05 (1.12)
2

The same minimization process as above yields the approximate result for plate cutting:
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F= .92qa0 10 ° 5t' 5p°- (1.13)

Notice that the cutting force solution has eliminated the crack opening displacement

parameter.

Th: closed form solutions by Wierzbicki, et al. are of the same functional form as

the empirical relationships developed by Lu and Calladine. They are explicit in that the

material parameters and geometry are entered directly into the formula, whereas in

previous methods, the experimentally derived constants contained much of that

information.

Zheng and Wierzbicki (1994) have recently formulated closed form solutions for

the steady state plate cutting force. Their simplified model gives the following equation:

Fss = M,, (2 B sin 0tan 0+ 37r)(! + Yi cot 0) (1.14)
t

where ,. , the fully plastic bending moment, and B is the wed),e width.

1.4 Evolution of MIT Plate Cutting Experiments

There have been three generations of cutting experiments conducted at MIT. The

first two were conducted by Thomas (1992) and Maxwell (1993). the details of which are

contained in their respective theses. The third generation is described in this thesis.

The purpose of the first generation of tests was to determine the validity of the

closed form solution in Equations 1.8 through 1.10. Thomas conducted eight experiments

with two different wedge semi-angles and four plate thicknesses on both aluminum and

cold rolled steel specimens. The specimen dimensions were 19 in. by 16.5 in. The plate
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tilt angle of 200 was constant throughout all the tests. The theory correlated very well

with the experimental results. One drawback to this set of tests was that the test machine

was limited to a 100 mm stroke. This required that the tests be accomplished in three

consecutive strokes.

The second generation of tests were designed to further explore the validity of

Wierzbicki and Thomas' plate tearing solution, as well as the cutting solution of

Wierzbicki and Zheng (Equations 1.11 through 1.12) by varying the plate thickness,

angle of attack, and wedge geometry. To overcome the difficulty of the short cutting

stroke of the previous experiments. Maxwell used a screw driven test machine that

provided a continuous cutting stroke. There were nineteen tests conducted on three

thicknesses of cold rolled steel. Three wedge semi-angles and a cylindrical wedge were

used at four plate tilt angles. Maxwell designed and built a new test fixture to hold the 22

in. by 16.25 in. specimens. Maxwell investigated the central separation (i.e. central

cutting and tearing) and the concertina tearing modes. The theory showed generally good

correlation with the experimental results. All the existing tests and theoretical

developments were concerned with unstiffened plates.

Paik (1994) recently conducted cutting experiments of longitudinally stiffened

plates and used Wierzbicki and Thomas' plate cutting solution of Equation 1.8 by

smearing the plate and stiffeners into an equivalent thickness plate. Paik compared two

experiments to Equation 1.8 which underestimated the final work in cutting by 19.5% and

32.1%.
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4

1.5 Research Objectives

This research expands the progression of experiments to include longitudinal

structural members. The objectives of this research are:

(a) Design and perform cutting experiments of longitudinally stiffened

single hull and double hull models. This will produce new experimental data in the area

of ship grounding research.

(b) Develop new or modify existing kinematic models leading to closed

form solutions of the force required to cut the longitudinally stiffened structures and

compare to experimental results.

The geometry of the single and double hull models and wedges. and the

experimental apparatus are discussed in Chapter 2. The experimental results are in

Chapter 3. In Chapter 4, computational kinematic models are formulated producing upper

bound force-displacement solutions which are compared to experiments. Chapter 5

concludes and makes recommendations for future work.
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Figure 1.1 Plate Cuuing by a Wedge.
(Vaughan (1978).)
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Chapter 2

Experimental Models and Apparatus

The previous chapter discussed the state of the art in ship grounding research.

This chapter describes the structural design considerations and geometry of longitudinally

stiffened single hull VLCC and the Unidirectionally Stiffened Double Hull (USDH)

design. From this, the geometry of the scale model specimens is determined. Also the

design of the wedges that simulate various rock geometries is discussed, and the

experimental apparatus is described.

2.1 Ship Structural Design Considerations

The structural design of a ship typically starts by determining the loading

conditions that the ship will be experiencing during its service life. Normal operation

includes loading conditions such as bending of the hull girder (hogging, sagging, and still

water), cargo live loads, structural dead loads, liquid loads, cyclic fatigue, and exterior

hydrostatic loads. The ship is also subjected to infrequent loads such as flooding and

drydocking, and in the case of naval vessels, combat loads such as underwater explosions.

The structure is designed, analyzed, and optimized to withstand the normal loads to some

allowable stress level, and to remain intact under extreme loads. (The author was unable

to find any ship design practices or references that consider grounding loads when

designing ship structures.)

Mission characteristics such as payload capacity and endurance determine the size

of the ship. This in turn. establishes the length, beam, and depth of the ship, and, hence,

the structural dimensions. These dimensions are then analyzed under the loading

31



conditions. Ships that have similar size and function will have similar structural

geometry.

The USDH design was first introduced by Okamoto, et al (1985) for use in bulk

oil product carriers. The USDH employs longitudinal girders between the inner and outer

hull plating According to Okamoto, the primary advantages of the USDH design are:

"* Reduced number of structural discontinuities which minimize stress concentrations,

"* Improved structural integrity by increased torsional rigidity and more efficient load

transmission,

"* The structural simplicity allows for more complete analysis.

"* Increased producibility and potential for automated welding due to the lack of closely

spaced transverse members.

"* Ease of inspection and maintenance between the hulls due improved access in the

cellular structure.

Beach (1991) expressed the interest of the U.S. Navy in the USDH design primarily for

improved survivability of warships due to weapons effects, as well as the benefits listed

above. The Naval Surface Warfare Center (NSWC) is conducting research in this design

for use in naval ships.

Figure 2.1 shows the concept of the typical midship geometry of longitudinally

stiffened single hull VLCC and the USDH design. The major disadvantages of the

double hull compared to the single hull design are:

"* Increased structural weight,

"• Potential decrease in the ship's initial stability, and
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Increased inspection and maintenance requirements.

All of these lead to increased cost, but the cost may be recoverable by the

significant advantage of the double hull in oil outflow protection (in the case of oil

product carriers) and survivability (in the case of warships).

2.2 Determination of Scale Model Geometry

Ship structural designs vary depending on the function of the ship and design

philosophy of the naval architect. thus making it difficult to pick the exact design

geometry on which to base scale test models. Therefore, a representative design or design

guidance was used to scale the USDH and longitudinally stiffened single hull models.

For the experiments, several constraints exist that had to be accounted for in

scaling the models. The goal was to use as much as possible of the existing test fixtures,

equipment, and steel sheet inventory on-hand in the lab in order to save time and expense.

2.2.1 Double Hull Model

The geometry for the USDH model was determined with the cooperation of

NSWC. For simplicity, square cells were selected. To find the geometry of the model,

three major constraints were considered:

1. The selected welding technique' required a minimum plate thickness of

approximately 0.5 mm (0.02 in.).

t The technique used was electron beam welding. This is discussed further in Section 2.3. 1.
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2. The fixture that holds the model was designed for a maximum plate thickness of

2 mm (0.08 in.).

3. NSWC recommended a cell width to plate thickness ratio, bit, of 62.

Plate thicknesses of 0.406, 0.749, 1.130, and 1.829 mm were evaluated. The 0.406 mm

plate failed to meet the minimum thickness for welding criteria. The 1.130 and 1.829 mm

plates were not used since the combined thickness of two plates in the double hull design

exceeded the 2 mm constraint. The 0.749 mm plate met the minimum thickness for

welding and the 2 mm constraint, and therefore was selected for dimensioning of the

USDH model.

The next task was to determine the number of cells in the model. It was desired

that the center cell be symmetric about the plate longitudinal axis so that the wedge

would begin to cut between two longitudinal stiffeners. This required an odd number of

cells. Several other factors drove the dimensioning of the cells:

* The wedge shoulder width was to be approximately 2b. This would ensure that the

longitudinals would interact with the wedge.

* The test fixture designed by Maxwell only accommodates a single plate. The addition

of the second plate in the double hull model would require that spacers be added to

the fixture to ensure the model was fully clamped at the edges.

The effective width of the model, w, when installed in the test fixture is bounded at

11.5 in. (292.1 mm).

A discrete number of cells can be fitted into the 11.5 in. width. A reasonable number of

cells would be 3, 5, 7, or 9. Table 2.1 shows that the number of cells drives cell
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dimensions, spacer size, and the wedge shoulder width, which in turn determines the size

of the wedge. Since the wedges and spacers are fabricated out of solid blocks of steel, it

was desired to keep the weight and machining cost down. However, it was desired to

have the model dimensions large enough so that interaction of the longitudinals with the

plating can be studied. Therefore, seven cells were selected, which gave the cell

dimensions of h=b=1.64 in. (note that there are 5 actual cells in the model plus two cells

when the frame spacers are added). This selected cell spacing gives b/t=55.7, which is

considered satisfactory. Figure 2.2 shows the final USDH model geometry.

Table 2.1 USDH Model Cell Size Options.

N w/N = b Wedge Shoulder Width
(number of cells) (cell spacing) (-2b)

3 3.83 in. (97.3 mm) 7.66 in. (194.6 mm)

5 2.30 in. (58.4 mm) 4.6 in. (116.8 mm)
7 1.64 in. (41.7 mm) 3.28 in. (83.4 mm)

9 1.28 in. (32.5 mm) 2.56 in. (65.0 mm)

2.2.2 Single Hull Model

The geometry of the single hull model was based on the midship section taken

from a 140,000 dwt VLCC2, provided by Fernandez (1993). who considered this ship of

typical modern VLCC design. The VLCC prototype has a length between perpendiculars

(LBP) of 269.0 m and a beam of 43.2 m.

2 Plan No. 71147-10-1001-MODI, Astilleros Espanoles, S. A., Factoria de Puerto Real, Hull C 56,
15 March 1988.
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For the plate cutting experiments, a representative uniform section from the

VLCC prototype was selected to be modeled. This section has only longitudinally

stiffeners attached to the plating. No transverse members or major longitudinal girders

were included. The clamped boundary condition at the bottom of the test fixture acts as a

transverse member. The task was to determine the proper parameters to scale the model

from the prototype VLCC section. The geometry of a single stiffener/plate combination is

shown in Figure 2.3. For the VLCC prototype, the dimensions of the stiffener and plate

are given in Table 2.2.

Table 2.2 VLCC Prototype Stiffener and Plate Dimensions.

plate: tp = 18 mm (0.71 in.)

b = 850 mm (33.46 in.)

web: t = 11 mm (0.43 in.)

b,,= 525 mm (20.67 in.)

flange: t = 30 m (1.18 in.)

, b= ISO mm (7.09 in.)

The initial parameters for scaling from the prototype to the model were based on the

section moment of inertia. Since the longitudinal section design is based largely on

primary bending stresses due to hogging and sagging of the ship hull girder, it was

thought that this was the proper scaling method. It turned out that this was probably not

the best method since many different model stiffener/plate dimension combinations could

give the same section moment of inertia as the prototype. This was unsatisfactory since it

was desired that the model have similar stiffener/plate interaction when cut by a wedge as
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the prototype would upon grounding. It is expected that the stiffeners will inhibit plate

bending and, in turn, the bending of the plate will cause tripping of the stiffeners. So, the

thickness ratios of the web, flange, and hull plate of the VLCC prototype were used as

scaling parameters.

As mentioned above, there was an inventory of steel sheets on-hand in the lab,

with thicknesses t, = 0.749 mm (0.030 in.), t2 = 1.130 mm (0.044 in.), and tý = 1.829 mm

(0.072 in.). These three thicknesses were used in some combination so that the model

would scale with the prototype geometry. Using t, for the web, t2 for the plating, and t3

for the flange gives the thickness ratios shown in Table 2.3.

Table 2.3 Stiffener/Plate Thickness Ratios for VLCC Prototype and Model.

VLCC Prototype Scale Model Relative Error

tf/4 =2.73 t3 /t = 2 .4 4  -10.6%

tp/t. = 1.64 t2/t = 1.51 -7.9 %

tp /t = 0.60 t2 3= 0.62 +3.3%

Scaling by these thickness ratios gives a reasonable model of the prototype based on the

relatively small errors. A further check was conducted by calculating the ratio of

moments of inertia of the plate/stiffener combination to hull plating for both the model

and the prototype as shown in Equation 2.1.

IM = 4.006 x 10' IVLCC = 3.452 x 10' (2.1)

IpM I pVLCC
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The relative error between the ratios is 16%. The selected steel sheet thicknesses for the

model and the associated prototype bit ratios from Table 2.2 give the model geometry

shown in Table 2.4.

Table 2.4 Single Hull Model Stiffener and Plate Dimensions.

plate: t, = 1.130 mm (0.044 in.)

b = 53.36mm (2.1 in.)

web: t_ - 0.749 mm (0.030 in.)

b,, 35.75 mm (1.41 in.)

flange: tf 1.829 mm (0.072 in.)

br = 10.97 mm (0.442 in.)

With b = 2.1 in. from Table 2.4, six longitudinals could be fitted onto each plate. Since

the wedge shoulder width is approximately 3 in. (as determined by sizing the USDH

model), it was surmised that the outermost longitudinals would not be affected during

cutting. Furthermore, if the longitudinals were affected, they probably would interfere

with the sides of the test fixture. Therefore, four longitudinals spaced symmetrically

about the longitudinal center line of the plate were selected for the single hull model as

shown in Figure 2.4.

2.3 Fabrication of the Hull Models

Determining the joining technique to be used for the double hull model proved to

be the most difficult task. Unlike full scale ships, where access to the joint is possible. the
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models were so small that access to all the joints was nearly impossible. Three possible

welding schemes were evaluated. The first method consisted of fillet welding one of the

outermost longitudinals to both plates. Subsequent longitudinals would have been

inserted in between the plates, but only one side would have been welded as shown in

Figure 2.5. The second method consisted of welding I-beam sections together to achieve

the desired double hull geometry. The final method was to join the longitudinals to the

plates from the plate side opposite of the joint (i.e. the blind side). Two such joining

methods were investigated: electron beam welding (EBW) and brazing.

2.3.1 Welding Technique Selection

Several machine shops at MIT were consulted to determine the feasibility of

these joining methods. The machine shops were deemed to have inadequate equipment to

perform what they characterized as a difficult task. The Ocean Engineering (OE) and the

Nuclear Engineering (NE) Welding Laboratories, two specialized laboratories at MIT,

were consulted for further assistance.

Both labs rejected the option of the I-beam method primarily because of the

unavailability of the desired dimensioned I-beam. Manufacture of custom I-beams would

have been expensive and difficult. Even if such I-beams were available, residual stresses

due to welding would have been introduced which might have caused considerable

distortion of the double hull model.

The welding labs were unable to apply conventional welding techniques to the

model due to the joint access restrictions. The OE lab suggested the use of electron beam

or brazing. The electron beam technique is a fusion joining process in which the

workpiece is bombarded with a dense stream of high velocity electrons in an evacuated

39



chamber. A major advantage of EBW is the very deep penetration that is achieved.

Brazing coalescence is produced by using a nonferrous filler metal having a melting point

below that of the base metal. The filler metal is distributed between the closely fitted joint

surfaces by capillary action.

Two outside specialists were consulted for assistance in the joining problem.

Hooven Metal Treating Incorporated recommended use of nickel braze to allow

relaxation of the tight joint tolerances. However, Hooven still had reservations about the

success of the process. Joint fitup tolerances in brazing must be very tight, otherwise the

filler metal will not flow and gaps will ensue. This will result in a weakened bond. The

MIT machine shops determined that even the relaxed tolerances were tighter than their

capability to machine. The Applied Energy Company was asked to assess the feasibility

of manufacturing the double hull models using the electron beam welding (EBW)

technique. A "T" specimen was successfully welded from the flange side of the specimen.

However, due to the very narrow electron beam, weak points at the "T" joint between the

longitudinal and the plate could be introduced as shown in Figure 2.6. There was concern

in maintaining as much welding similitude of the model to the full scale prototype, so, the

electron beam was oscillated at 60 Hz laterally as the beam traveled longitudinally. This

simulated a fillet weld (as well as possible for this technique) in the specimen and served

to minimize the weak points in the weld. The EBW method produced very little distortion

of the specimens. This method proved to be the best for welding of the double hull

models, and was also used for joining the single hull models. For the interested reader,

Becket (1991) gives a good overview of the EBW process.
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2.4 Wedge Geometry and Fabrication

Rocks in the ocean are as varied as what is seen on land. They could be

characterized by the basic shapes of cones, spheres, or ledges. A study of rock geometries

for use in modeling of wedge geometry has not been done. The dilemma was to select a

wedge geometry that makes analysis of the experiments easier, while trying to capture

what happens in a real ship grounding. Previous plate cutting experiments by Thomas and

Maxwell focused mainly on the use of sharp wedges. Both investigated the use of wedges

with semi-angles of 200 and 300. Maxwell also used a cylindrical wedge.

It was decided early on, that for this research, the narrow 200 wedge was not

thought to represent any nominal rock geometry, so, much broader semi-angles of 300

and 450 were selected. A radius was applied to some of the wedge tips to model a more

blunt rock. A cylindrical wedge was also fabricated to ensure a completely blunt surface

where no machining-type cutting could be applied to the plate by the wedge. A narrow

wedge (i.e. shoulder width less than the longitudinal spacing) was fabricated to be used to

determine the force in cutting the plate between longitudinals (as explained in Chapter

3.). Table 2.5 and Figure 2.7 summarize the six wedges used in the experiments.

The wedges were machined from solid blocks of cold rolled mild steel.

Subsequent use of two of the wedges showed that the wedge surfaces scarred quite easily

at the point of contact between the wedge and plate. It was feared that continued use

would machine a groove into each wedge, thus causing the plate to preferentially stay in

the groove during cutting. To avoid this, each wedge was surface hardened to a depth of

0.030". The hardening was done by the BoMak Corporation, of Woburn. Massachusetts.

BoMak treated each wedge in a cyanide solution at 16500 F for three hours.
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Table 2.5 Geometry of Wedges.

Wedge No. Wedge Semi- Tip Shape Shoulder Width
angle (0)

1 450 sharp 3 in.

2 450 3/8 in. radius 3 in.

3 300 sharp 3 in.

4 300 3/8 in. radius 3 in.

5 cylinder 1.5 in. radius 3 in.

6 450 3/32 in. radius 3/4 in.

2.5 Experimental Apparatus

The experiments were conducted on the same equipment as that used by Maxwell.

It was desired to use as much of the existing equipment and steel stock as possible to

minimize the costs of the experiments. Modifications to the fixtures were made as

required to support the current series of tests. The test apparatus consists of the following

equipment shown in Figure 2.8:

"* Instron (Model TTDL) Universal Test Machine (screw driven, 20 kip capacity)

"* Zenith 386-SX Personal Computer (IBM compatible)

"* National Instruments Data Acquisition Software Program (NI-DAQ version 4.2)

"• Specimen Test Fixture

"* Various Wedges

"* Wedge-to-Load Cell Adapter
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The specimen test fixture is shown in Figure 2.9. The 16.5 in. width of the fixture

was limited by the crosshead width. Spacers were fabricated to hold the double hull

specimens in a clamped boundary condition on both plates. The long rods in the fixture

act as drawing beads to give a uniform zero displacement boundary condition. The bolts

provide the clamping force. The wedge adapter is shown in Figure 2.10. The adapter is

attached directly to the load cell located at the top of the machine. The wedge is attached

to the bottom of the adapter. The fixture and adapter provide an effective cutting stroke of

approximately 13.5 in.

Appendix A explains the procedure for the operation of the Instron test machine,

data acquisition program, and the subsequent data reduction.
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Figure 2.1 Concept of Unidirectionally Stiffened Double Hull (USDH) and Single Hull
(SH) VLCC Midship Sections.
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Figure 2.5 Fillet Method of Welding the USDH Model.
(Concept by M. Yahiaoui.)
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Figure 2.6 Possible Defect of Electron Beam Welding of T-stiffener.
(Concept by M. Yahiaoui.)
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2.7 Geometry of Wedges (section view).

49



- 5 3

20 kip Instron
Legend: 1. Specimen

2. Crosshead

3. Wedge and Adapter
4. Built-in Chart Recorder
5. Machine and Chart Recorder Control Panel
6. Crosshead Control Panel
7. Data Acquisition Computer

Figure 2.8 Schematic of 20kip Instron Universal Test Machine and Data Acquisition
System.
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Chapter 3

Experimental Results and Observations

3.1 Preparation of the Instron Universal Test Machine

The experiments were carried out on the Instron 20 kip screw driven universal

testing machine as discussed in Chapter 2. A 386 personal computer with a National Data

Acquisition software package was used to process the output from the test machine.

There had been concern that the data acquisition program may not be set up properly or

that there may be some problem with the test machine since some of the force-

displacement graphs from previous experimental work were showing cut off of the data.

Nurick (1993) recommended that a verification of the machine output be conducted.

The approach to verification was to conduct tensile tests on a I kip Instron

machine (that was known to give good results) and the 20 kip Instron machine, and then

compare the results.

To prepare the 20 kip Instron machine, the connections between the data

acquisition computer and the Instron were rewired. The rewiring was required since some

of the connections were frayed. This cleared up the data cut off problem. The built-in

strip chart recorder was returned to working order. The strip chart recorder was to be used

as a backup to the data acquisition program, and would serve to verify the results of the

computer program.
The tensile specimens used were in accordance with ASTM section A370

specifications. Two tests were conducted on each Instron machine. There was little

variation of the force-displacement graphs between the 1 kip Instron machine, the chart

53

fEOMMME



recorder output and data acquisition program output of the 20 kip Instron machine. The

conclusion was that the setup and output of the 20 kip Instron machine was satisfactory

and ready for use in the cutting experiments.

3.2 Summary of Experimental Results

The results, observations, problems, and resolutions during the wedge cutting of

the longitudinally stiffened double and single hull models are presented. A total of twelve

experiments were conducted on the single and double hull models as summarized in

Table 3.1. The force-displacement curves and accompanying photographs are referenced

by the figure numbers in the table. The primary failure modes listed in the table are

explained as follows and can be observed in the photographs:

"• "Cutting" - the plate curls and flaps are formed as it is cut by the wedge.

"* "Concertina" - the plate tears and folds in the concertina mode.

"* "Shear" - the longitudinals and the attached plating deform in shear buckling as the

wedge progresses.

The results are not presented in the actual order that the tests were conducted, rather they

are presented in a manner that makes it easier for the reader to assimilate the information.

The Instron machine was setup and operated according to the procedure shown in

Appendix A. The equipment parameters were the same for each experiment. All of the

experiments were conducted with the models at a zero2 degree angle of attack from the

vertical, and the crosshead traveled at a displacement rate of 1 inch/minute.
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Table 3.1 Summary of Cutting Experiments Results.

Test Test Model Wedge No. Primary Failure Modes Force Curve

No. Date and Photo

1 1/27/94 USDH #1 : 0 = 450 , sharp tip Cutting, Shear Fig 3.1

2 10/5/93 USDH #2: 0 = 45*, r-3/8 in. Concertina, Shear Fig 3.2

3 9/30/93 USDH #3 : 0 = 300, sharp tip Cutting, Concertina, Shear Fig 3.3

4 1/31/94 USDH #4: 0 = 300, r--3/8 in. Concertina. Shear Fig 3.4

5 2/8/94 USDH #5 : cylindrical Cutting, Concertina, Shear Fig 3.5

6 2!1'94 USDH #6: 3/4 in.. r=3/32 in. Concertina Only Fig 3.6

7 1/5/94 SH #1 : 0 = 45*, sharp tip Cutting Fig 3.7

8 2/4/94 SH #2: 0 = 450, r-=3/8 in. Cutting Fig 3.8

9 1/3/94 SH #3 0 = 300, sharp tip Cutting Fig 3.9 (a), (b)

10 2!8/94 SH #5 cylindrical Cutting, Concertina Fig 3.10

11 12110/93 SH #6: 3/4 in., r=3/32 in. Concertina Only Fig 3.11

3.3 Discussion of Experimental Results

3.3.1 Double Hull Tests

All of the double hull model tests were accomplished with the wedges cutting

through both plates. In every test. a characteristic shear wave pattern was observed as

shown in the photographs of Figures 3.1 through 3.5. As the wedge cut into the plate the

longitudinal and attached plating buckled and folded out of plane. In all tests, the electron
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beam welds did not fail. In the concertina tearing mode, the plates tore in what appears to

be the HAZ due to the EBW process. There was no tearing of the longitudinals; rather

they buckled and folded due to the shear forces of the wedge-plate interaction. Some

shear buckling can be seen on the specimens at a distance of I to 1.5 cells away from the

center cell, but the bulk of the damage is localized to the vicinity of the wedge width.

Ts 1 - (Wedge #1, 0=450, sharp tip) The primary failure modes were cutting of

the both plates at the wedge tip, and the characteristic shear buckling of the plating and

longitudinals. The force level climbed rapidly as the wedge shoulders made contact with

the inner longitudinals. Once this contact was made, then the average force level

increased at a constant rate. The final average force was approximately 23 kN at 0.31 m

cut length. Figure 3.1 shows the photograph and force-displacement curve.

Test2 - (Wedge #2, 0=45', r=3/8 in.) The model failed in concertina tearing of

both plates due to the blunt tip of wedge #2. The force-displacement curve of Figure 3.2

showed periodic oscillations in the force level. This was due to the local effects of

concertina tearing. The final average force level was approximately 26 kN at 0.31 m of

cut length.

lues - (Wedge #3, 0=-300, sharp tip) In this first test on the double hull models,

it was noticed that as the cutting of the specimen progressed to about two inches in depth,

a significant out-of-plane bending moment was placed on the adapter connecting the

wedge to the load cell. The adapter was cylindrical and approximately two feet in length.

The cause was that the frame holding the specimens had to be offset so that it could pass

next to the adapter during the cutting stroke. The offset was on the order of three inches
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from the center of loading. A bending moment ensued due to the large force encountered

in cutting both plates of the double hull specimen and the offset. The test was stopped for

fear of damaging the load cell. To correct this condition, a new adapter was designed

consisting of four rods bolted to a plate. This plate was then connected to the load cell.

This configuration allowed the double hull specimen to be aligned directly under the

center of loading and thus the rods would straddle the plate as the wedge progressed deep

into the plate. The double hull test was resumed and this configuration proved successful

with no applied moments on the adapter. Figure 3.12 shows the adapter configurations.

The force-displacement curve in Figure 3.3 showed that the force reaches a high

level at a short cut distance into the specimen. This force was close to the mean force

throughout the entire cutting process. This explains the bending of the adapter shortly

after starting the first test. The specimen exhibited two distinct failure modes: cutting of

one plate. and concertina tearing of the other. The cutting mechanism showed the curled

flaps as in the single infinite plate cutting experiments except that, when the flap reached

the longitudinal, it folded over. This continued throughout the cutting length. On the

other side the concertina mode progressed throughout with the longitudinals as the

boundary. The force level reached approximately 20 kN near the end of the test.

Tet4 - (Wedge #4, 0=300, r=3/8 in.) The primary failure modes were concertina

tearing of both plates and shear buckling. Figure 3.4 shows the periodic oscillations due

to the concertina tearing. The final average force level was approximately 20 kN at 0.34

m of cut length. Thirty-five concertina folds were observed.

Test5 - (Wedge #5. cylindrical, 3" diameter) This test represents the more

realistic failure modes that would be expected in an actual ship grounding. Concertina
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tearing of one plate and cutting of the other plate along with shear buckling was observed.

There was fracture of the plate being cut running ahead of the wedge face. There was off-

center travel of the wedge as it progressed down the specimen because there was no sharp

wedge angle to keep it centered. The off-center travel tore both plates away from one of

the longitudinals (the second longitudinal from centerline). This tearing near the

longitudinal was again in the HAZ of the weld. Figure 3.5 shows the photograph of the

specimen and the force curve. The large drop-offs of the force level are due to the plate

fracture. Once the wedge face caught up with the crack tip, the force level began to

increase. This rise and fall of force due to cracking continued throughout the test. The

smaller periodic oscillations are due to the concertina tearing of one plate. The final force

level reached approximately 30 kN, and was the largest force level of the double hull

tests.

Tet- (Wedge #6, 3/4" width, 0=45°, r=3/32 in.) The purpose of this test was to

determine the force level in the concertina tearing mode. The wedge width being less than

the longitudinal spacing, and the round tip ensured that the concertina tearing mode was

observed with no interaction between the wedge and longitudinals. Figure 3.6 shows the

photograph of the concertina folds and the force curve shows the periodic oscillations.

The thirty-five peaks on the force curve correlate to the number of folds observed in the

specimen. The average force level is constant at approximately 8 kN (note that this is the

force level for the concertina tearing of both plates).
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3.3.2 Single Hull Tests

In general, the single hull cutting experiments exhibited complex failure

mechanisms. Various modes of bending and membrane stretching are observed in the

plate and the web and flange of the longitudinal members. In all tests, no failure of the EB

welds was observed. The rolling of the plate flaps is evident as would be expected from

the numerous unstiffened plate cutting experiments conducted by other investigators (see

Chapter 1). Significant friction between the wedge and the rolled plate flaps was observed

as shown by scoring and rubbing marks on the test specimens. The stiffener flanges are

thought to have significant elastic energy stored as evidenced by little to no folding of the

flanges into small radii of curvature.

Tst7 - (Wedge #1, 0=45-, sharp tip) The primary failure mode was central

cutting with rolling of the plate flaps and longimdinals. Figure 3.7 shows the test results.

As the test began, the characteristic flaps curled inward towards the longitudinals. The

sharp rise in the force level occurring at approximately 0.025 m was due to the wedge

shoulders making contact with the flanges. At a force level of about 17 kN, oscillations

occur due to cracks periodically running laterally across the plate as the wedge

progressed. The plate tore and the crack would run towards the longitudinals. Once the

crack tip neared the welded joint, it stopped and the wedge would catch up and begin

cutting the plate. During this time, the longitudinals were rolling up with the plate. At a

cut length of about 0.1 m, the inner two longitudinals, made contact with the outer two

longitudinals. This accounted for the rise in force to a level to about 23 kN. The cutting

continued until fracture again occurred at 0.2 m. The force level to climbed to about 25

kN before the test was stopped.
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lTest - (Wedge #2, 0=45°, r=3/8 in.) The primary failure mode was central

cutting. Figure 3.8 shows the force-displacement curve and specimen photograph. At the

start of the test, a tear of the plate near one of the outer longitudinals occurred in the

HAZ. This tear was approximately two inches. This caused the wedge to cut off-center,

which in turn caused the plate flap to fold in a sheared concertina mode. The drop in force

at approximately 0.1 m of cut length was due to plate tearing in the weld HAZ near one of

the outer longitudinals. The drop in force at 0.15 m was due to plate cracking ahead of the

wedge. The subsequent rise in force level is due to the buckling of one of the inner

longitudinals. Cracking of the plate ahead of the wedge tip again occurred at

approximately 0.22 m.

Tet9 - (Wedge #3, 0=-300, sharp tip). This was the first single hull experiment

and, as in the first double hull test, a bending moment on the load cell occurred. This

happened because the wedge began to drift off center as the cutting started, causing the

wedge to make contact with only one of the longitudinals. The stiffness of the

longitudinal pushed the wedge off center even more. As the wedge traveled, the plate

began to fracture, rather than being cut by the wedge. A lateral bending moment

developed on the wedge adapter, and the test was stopped for fear of damaging the load

cell. Figure 3.9(a) shows the partial results of this test. From the figure, it can be seen that

up to approximately 0.025 m, the force was increasing as the plate flaps developed. After

that, the force drops off dramatically to near zero as the plate began to crack. Around 0.05

m of cutting distance, the wedge made contact with the longitudinal and the force

increased.

Rather than discard the single hull model, the damaged portion of the model was

cut off, leaving a shorter specimen for testing. To prevent a bending moment on the
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wedge adapter from developing, a precut notch of 0.5" was made to this modified

specimen. The test was continued with the same wedge. The precut was successf in that

the wedge stayed in the center of the plate and both shoulders of the wedge contacted the

longitudinals at nearly the same instant. The force-displacement curve shown in Figure

3.9 (b) shows that the force increases up to a cut length of approximately 0.125 m with

some drop-offs at approximately 0.05 and 0.1 m. The webs of the longitudinals were

being rolled up with the plate flaps. From about 0.125 m to 0.15 m the force appears to

level off as if it were to begin steady state cutting, however, the force drops off rapidly as

the plate flaps begin to roll in the opposite direction . The plate begins to be pushed out

away from the longitudinals, and since the longitudinals were no longer being rolled up,

the force level dropped. At 0.2 m cut length, the force began to increase as the

longitudinals started to buckle and try to trip in towards the wedge. As can be seen from

the graph, the force level climbs to its previous level of about 15 kN (before the flap

direction change) just prior to completing the test.

Tea 10 - (Wedge #5, cylindrical, 3" diameter). The primary failure mode was

concertina tearing and rolling of the plate flaps and longitudinals. Figure 3.10 shows the

test results. Concertina tearing began immediately after starting the test. At approximately

0.0o m of cut length, the force jumps because one of the inner longitudinals had

completely tripped and was now being pushed into its neighboring outer longitudinal. As

the test continued, the wedge began to drift off centerline, and the peak force of

approximately 26 kN at 0.15 m is due to the wedge riding nearly directly over a

longitudinal. Due to this off-center travel, the mass of concertina folds slipped from

under the wedge. The blunt cylindrical wedge now caused the plate to fracture ahead of
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the wedge face. This accounts for the dip in force level to below 10 kN. The wedge then

caught up to the crack tip and folding of the plate began causing the force to increase.

m 11 - (Wedge #6, 3/4 in. width, 0-450, round tip). This test was conducted to

determine the force required in concertina tearing of the plate between the longitudinals.

Figure 3.11 shows the force displacement curve. It was thought that the concertina tearing

mode would be observed in the other single hull tests, but this turned out not to be the

case (except for some partial concertina tearing in Test 10).

The last single hull experiment was to use wedge #4 (20=600, r=3/8 in.). This

experiment was not accomplished since the results of the previous single hull tests

showed similar failure modes. It was determined that no new information would be

gained from conducting this last experiment.
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Figure 3.1 Test No. I (USDH, Wedge #1, 0=450, Sharp Tip) - Photograph and Force-
Displacement Graph.
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Figure 3.2 Test No. 2 (USDH, Wedge #2, 0=45*, 3/8 in. Radius Tip) - Photograph and
Force-Displacement Graph.
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Figure 3.3 Test No. 3 (USDH, Wedge #3, 0=30, Sharp Tip) - Photograph and Force-
Displacement Graph.
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Figure 3.4 Test No. 4 (USDH, Wedge #4, 0=300, 3/8 in. Radius Tip) - Photograph and
Force-Displacement Graph.
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Figure 3.5 Test No. 5 (USDH, Wedge #5, Cylindrical) - Photograph and Force-
Displacement Graph.
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Figure 3.6 Test No. 6 (IJSDH, Wedge #6, 3/4 in. Wide, 6=450, 3/32 in. Radius Tip) -

Photograph and Force-Displacement Graph.
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Figure 3.7 Test No. 7 (SH, Wedge #1, 0=45', Sharp Tip) - Photograph and Force-

Displacement Graph.
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Figure 3.8 Test No. 8 (SH, Wedge #2, 0=45', 3/8 in. Radius Tip) - Photograph and
Force-Displacement Graph.
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Figure 3.9a Test No. 9a (SH, Wedge #3, 0=30', Sharp Tip) - Photograph and Force-
Displacement Graph.
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Figure 3.9b Test No. 9b (SH, Wedge #3, 0=30°, Sharp Tip) - Photograph and Force-
Displacement Graph.
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Figure 3.10 Test No. 10 (SH, Wedge #5, Cylindrical) - Photograph and Force-
Displacement Graph.
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Figure 3.11 Test No. 11 (SH, Wedge #6, 3/4 in. Wide, 0=45', 3/32 in. Radius Tip) -
Photograph and Force-Displacement Graph
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Figure 3.12 Wedge Adapter Modification.
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Chapter 4

Theoretical Models and Comparison to Experimental Results

This chapter discusses the formulation of a closed-form analytical solution to the

force required to cut a USDH model by a wedge, and applies existing analytical force

cutting solutions to the Single Hull model. The results are given here and compared to the

experimental results. Supporting calculations are provided in Appendix B.

4.1 General Solution Approach

The approach to finding a closed-form solution for the cutting force is to start by

assuming a steady-state deformation mode, and using an incremental deformation in that

mode, to find an upper bound to the force required. The following will first consider a

Lagrangian formulation which follows a material element, then the results will be

expressed in an Eulerian coordinate system which considers material flowing by a fixed

point. The knowledgeable reader can skip ahead to the results for internal work rate in

bending and membrane of Equation 4.14.

McClintock and Argon (1966) state the upper bound theorem as follows:

In a rigid-plastic continuum, deformation must occur under any system of loads, Fj, for

which a distribution of incremental displacements, 6, , can be found such that

(a) the displacement boundary conditions, if any, are satisfied,

(b) the displacements can be differentiated to give a strain, i,,, with no change in

volume anywhere, and
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* S

(c) the resulting plastic work done throughout the volume, V, of material, found

from the resulting strain, is less than (or equal to) the work done by the external loads

acting through the assumed displacements:

$ V"

where a, are the components of the stress tensor, and i.j=1,2,3 in indicial notation.

If it is assumed that in the plate there are no out-of-plane components of

displacement or gradient (u3 = 0,-c-- = 0), then i,j -+ a,3 = 1,2. It turns out that the
a X,

volume integral can be rewritten in terms of the bending moment times the rate of

curvature, ap 8c , and the axial force times the strain rate, NP iaf , over an area, S,

as

f (4.1)
S S

Note that the bending moment and force tensors, MO and Np, are coupled through the

yield criterion of the functional form f(MO,NO) = 0. It is assumed that in regions

experiencing high bending stresses, there are small membrane stresses. Likewise, in

regions of high membrane stresses, there are small bending stresses. This decoupling of

M., and N., is accomplished by inscribing the yield locus inside a rectangle as in Figure

4.1.

The right hand side of (4.1), can be expressed in the form

J. =f Mpk.OdS + f NpdS. (4.2)
S S
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The rate of internal plastic work is now the sum of internal bending work rate and

membrane work rate, that is

O.=w,, +w. (4.3)

Expansion of the tensor notation in (4.2) gives expressions for the rate of bending and

membrane work terms as

W' fJ(M.ik. + 2Mm. k. + M..k 1.,)dS +M 0 I
S

(4.4)

For a rigid-perfectly plastic material, the bending expression contains a
2 a"ot 2 i

continuous deformation field as well as a discontinuous field, where M. =s is

the fully plastic bending moment, 0, is the rate of rotation at the P'h plastic hinge and l1 is

the length of the hinge line.

In most practical applications, simplified velocity fields are constructed so that

plastic bending deformations are contained only in plastic hinges and plane deformations

between them. Consequently, the plane rate tensor in the continuous deformation region,

S. vanishes (k = 0) and (4.4) simplifies to
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(4.5)

f= (N.jk + 2Nn y + NY.,)dS.
S

Assuming no strain in the y-direction (i.. = 0) the associated flow rule gives the yield

criterion for the membrane response:

3-N 2 + 3N.2=N (4.6)

which describes a closed yield curve in the (xy) plane, where No=qot. To decouple N., and

N., idealize the yield curve by inscribing it inside a rectangle as shown in Figure 4.1.

Equation 4.5 now becomes

(4.7)

= =N.o f idS + -2 N. Jf dS.

Conversely, if the largest possible rectangle is inscribed in the yield curve, the stretching

and shear coefficients in the membrane term of (4.7) become 2/4h6, and I['6, respectively.

Taking the average values of the two idealized yield loci, gives coefficient values of

0.986 and 0.493, respectively. This now provides an estimate rather than a bound.

In the steady-state process, it is convenient to follow a material element along its

path relative to the wedge in an Eulerian coordinate system. Consider following an

elemental strip over the entire process of bending and membrane. The results comparable
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to (4.7) are written in terms of a local (,il) coordinate system, the velocity of the material

element, V, the jump in curvatures on both sides of the hinge, [r ] = (Kc " - r - ), and the

strains as the element stretches on entering and leaving a region, [ C ] = (C * - C- ).

The derivation of the membrane shear term, for example, starts by re-writing the

shear strain rate, using a chain rule, as

-• = - d= -d4 (4.8)

dt d4 dt

The velocity of the material element can be written as V d4 and is constant for a

steady-state process for all material elements. Thus,

4 d-E 4 d,7 = V dEg. (4.9)

From the definition, the membrane shear work rate is

2 J -Ngc,& =2 N 4fe d~d-q. (4.10)

Substitution of (4.9) into (4.10) and integrating gives

N~p 'ýndg,7 2NoJJdE.ýd1= 2 V "1,Vd. (4.11)

Wh73 JV 7 dd4 l 73- 1Je 'I. 1

The strain term is evaluated at the initial and final values of the stretched region as a jump

in the strain:
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0)) (4.12)

where 4 is the end of the zone of active plastic deformation. Substitution of (4.12) into

(4.11) gives the final expression for membrane shear work rate

= W o[SiVd1 (4.13)

Similar derivations are carried out for the remaining terms giving the final result for

bending and work rate for steady flow as

S= M.'], V l,

(4.14)

W 2= 3Njf[e,]Vdr+ 2 N0 J[ejVdn.

In the case of a single applied load F moving at a velocity, V, the external work

rate is

= FV (4.15)

4.1.1 USDH Solution

The relatively constant forces of experimental curves of Chapter 3 suggest that the

cutting of the USDH specimen is nearly steady-state. The increasing force in the
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beginning of the curve is considered a transition region and is ignored. The USDH

specimens were examined after testing to determine an acceptable model. Many models

could be devised, but the goal was to pick a model that would enable the analysis to be

simplified. A key assumption is made in the geometry of the USDH structure: the

thickness of the longitudinal girder is of the same order of magnitude as the hull plating,

and the longitudinal girder height is of the same order as the spacing between

longitudinals.

Zheng and Wierzbicki (1994) showed, in the steady-state cutting force solution of

a single plate, that a simplified model of deforming flat material segments approximates

the more rigorous solution of continuously deforming material to within 5%. (However,

their formulation appears to assume a batch type process. whereas the method here is to

assume a steady flow process.) The final USDH model is shown in Figure 4.2, where the

shaded region is the deformed area to be analyzed. The model assumes that the material

between the inner two longitudinals folds in the concertina mode under the wedge tip.

The gap is a conceptual representation of the accumulation of material due to membrane

stretching as the wedge progresses. The plate has clamped boundary conditions at the

ends and sides. If one follows a material element past the wedge in Figure 4.3, one sees

that the material bends at hinge lines and then is stretched as it passes around the wedge

shoulder. In the assumed strain field, the material must then return to its original length

by recompression or buckle out of plane after it passes the shoulder.

As shown in Figure 4.4, the wedge progresses into the specimen, cutting

symmetrically down the center of one cell, laterally pushing the inner two longitudinals

and deforming the associated plating. The deformed section is shown in Figure 4.5. The

wedge width is B. and the longitudinal spacing is b. The lateral distance that the wedge

deforms the plate and longitudinal is given by
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S(4.16)
2

In this analysis, the wedge width is constrained by b < B < 3b, ensuring only three cells

are deformed by the wedge.

The plating is damaged in three sections. The first section is the concertina tearing

of the plate between the inner two longitudinals. The second section is triangular with a

opposite side length of A, an adjacent side length of C, and an undeformed angle equal to

the wedge semi-aigle, 0. This triangle is bent and folded out-of-plane forming two new

triangles each having an opposite side length of A/2. The angles formed are (x, and or,,

where 0 = al + oa. The third section is parallel to the wedge shoulder and is bent out of

plane and folded into two segments each A/2 high by C long. Figure 4.5 shows the

idealized model compared to the photograph of the end view of a deformed U SDH

specimen.

Given B, b, and 0. the following parameters can be determined from the geometry

of the problem:

A

tan0

a, = tan- 2,8 (4.17)

t12 = 0 -tan-' 21
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4.1.1.1 Internal Work Rate in Bending

The internal work rate in bending assumes that the material flows and is bent and

unbent through some curvature at two stationary hinge lines, T1, and 112, as shown in

Figure 4.6. The material region can be divided into regions 1 and 2. Using the bending

term of (4.14), the bending work rate is written as

S= M .(q1;[Jr],V. + q 2[K'],V2 ). (4.18)

Following a material element moving at velocity V = t in region 1, the material must

first bend at 71,., then again at 11,. The material in region 2 bends only at T1Ib. The velocity

components normal to the hinge lines contribute in (4.18). From the geometry, and in

terms of the radii of the bends, r, and r, (which are estimated later), (4.18) becomes

-- , = Mj 2 VsinO +2A ' -r1 )Vsina,j, (4.19)

which upon simplification gives a final expression for the rate of work in bending

Or. = 2 a VA4 + (4.20)
-v3 4 r, ,

4.1.1.2 Internal Work Rate in Membrane Stretching

The membrane stretching is shown as the shaded area in Figure 4.7. The internal

work rate in stretching from (4.14) is
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The displacement function u(Tl), describing the stretched region, varies along the il axis.

The velocity of the material 4 is written can be written as 4 = V. The jump in strain is the

displacement over the original length ý, that is, [E] = (e - -)= Substitution of

these results and N0 = qjt into (4.21) gives

2 Vf u(r)drl. (4.22)

The maximum displacements between points A and B is u0, and between points C and D

is u, as shown in the projected segment view in Figure 4.8 are determined to be

(U 1 'I

Ua = cosO cosc. cosa=)

(4.23)

6=(A sin a, 1 cosa 2

u 2- cos, cosO cosa,

The displacement over the stretched area is expressed as

u(rq) f[ u, (qr)dr + f u2 (r)drq (4.24)

where u, (rl) and u2 (il) are determined from the geometry as
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A/2 )

(4.25)
--u1u2 (17) -- •(?I - A)'
A/2

Substitution of (4.25) into (4.24) and integrating results in

u(rq) = lU- +lu. (4.26)
2 Ua4~b

Substituting this result into (4.22) and integrating gives the final expression for the

internal rate of work in membrane stretching

1 VA +i14} (4.27)

4.1.1.3 Internal Work Rate in Membrane Shear

To ensure kinematic admissibility of the model, the gap between points C and D

must be closed. One way to do this is by shearing of the plate. Figure 4.9 shows the

geometry of the material that is assumed to be under shear. The shear work rate is given

from (4.14) as

Jk = 2- N [. IVndq. (4.28)

The jump in shear strain is approximated as
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+ -0)+ - (4.29)2 2

where 0 tan- (I U6 Substituting (4.29), and N, = ajr, in (4.28) gives

2 (b-A) I
2 (4.30)

which upon integration, gives the final expression for the work rate in shear as

01t( - A)V tan-' ( b(4.31)

4.1.1.4 Concertina Tearing Force

Wierzbicki (1994) has solved for the force required for concertina tearing mode of

a plate. The mean concertina indentation force has been calculated as

F,.. = 4aot/"b3 + 8 Rt (4.32)
3

where R is the specific work of fracture (i.e. fracture toughness), characterizing the

tearing resistance of plates and sheet metal structures, reported by Wierzbicki from the

work of Atkins (1988). For mild steel, the specific work of fracture is in the range

R - 300 to 1000 N/ram.
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The actual value of R, for a particular material, must be determined experimentally. This

is not done here, rather a value in the range is assumed.

4.1.1.5 Contribution of Friction

Inspections of the USDH specimens showed scored and rubbed surfaces where the

wedge made contact. This leads to the conclusion that friction must be included in the

formulation of cutting force. It is obvious that there is no friction in the concertina tearing

mode. The contribution of friction to the total force is found by finding the force tangent

to the wedge face and then projecting that force in the direction of applied force:

F1 = '-70P cos0 (4.33)

where F. is the force determined from the plastic work in bending, membrane, and shear

as

FP +- (Wb+W.,,. + W.), (4.34)

and gt is the coefficient of sliding friction. The total internal resistance to cutting

becomes the sum of the force to plastically deform the section and the friction force

Ff = FP +Ff =F I +t-- k + W. +. + - (4.35)
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4.1.1.6 Total Steady-State Cutting Force

The total cutting force is determined by assembling the above expressions. There

is only a single applied load in the cutting of the specimens, therefore the rate of external

work is greater than or equal to the total rate of internal work:

FV > FŽ V, (4.36)

which upon substitution of (4.35) yields

FV>_(Wb + )(, + + W--• . (4.37)

The minimum upper bound force of bending, membrane, and shear (excluding the

concertina tearing force) can be expressed as

F--I(v + Wst + W1), I-+ (4.38)

which, when the force in concertina tearing is added, becomes

V ktafl6

In the experiments there were four identical deformed sections. and two

concertina tearing surfaces, so the total force becomes
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F= 4(WbW 1W)(+ i~+2Fa.w,,... (4.40)

Substitution of (4.20), (4.27), (4.31), and (4.32) into (4.40), and noting that the velocity,

V, cancels out, gives a final expression for the total steady-state cutting force for the

USDH model

F = 40ot(l + 2 t A(4 + I )+ I(u- +_Ub )+ (b ta) + [80r.'3 b13 +16Rt

(4.41)

valid for b < B < 3b.

If b>_, then it is required that A-0 (from geometry), resulting in

w , =W, = W• = 0 which reduces Equation (4.40) to F = 2F,.

4.2 Application of Existing Solutions to the Longitudinally Stiffened

Single Hull

In the longitudinally stiffened single hull model, both a plate tearing initiation

solution (Wierzbicki and Thomas (1993)) and a steady-state plate cutting solution (Zheng

and Wierzbicki (1994)) is applied. Both are for single plates, but will be applied by

smearing the stiffened single hull into a plate with equivalent thickness. (Wierzbicki and

Zheng's (1993) cutting initiation solution with cutting at the crack tip rather tearing is not

used since the specimens were observed to tear at the wedge tip rather than being cut.)

90



An attempt was made to estimate the wedge force from the fully plastic torsion of

a single longitudinal. An order-of-magnitude comparison of the fully plastic twisting

moment of a stiffener compared to the fully plastic bending moment of the stiffener,

plate, and stiffener/plate combination showed that the bending of the stiffener/plate

combination is nearly two orders-of-magnitude greater than the torsion of the stiffener

(see Appendix B). This order-of-magnitude analysis shows that the stiffener and plate

cannot be modeled independently, but must be modeled as a unit. Inspection of the tested

single hull specimens showed very complex failure modes with double curvatures in

bending and tripping of the longitudinals, therefore, a simple theoretical model was not

attempted. Instead a simplified approach was used based on the concept of an equivalent

thickness.

4.2.1 Wierzbicki and Thomas' Plate Tearing Initiation Solution

The stiffeners and plating can be smeared to give an equivalent plate thickness, t1.

by the equation

A
t,, = A-+to (4.42)

where A is the cross sectional area of the stiffener, b is the spacing between stiffeners, and

t, is the hull plating thickness. The single hull model force-displacement curves, of

Chapter 3, exhibit much variation in the force level over the length of cut, 1, so they were

integrated to obtain a work-displacement curve. Equation 1.8 was integrated to give the

energy as
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W14 l.19a0 (A1 )" 1.4 l( Cos 9)" [tan 0) 0. + Ytan 9)'(4.43)wt 0 1.91(,

4.2.2 Wierzbicki and Zheng's Steady-State Plate Cutting

Solution

In a similar manner, the steady-state force from (1.14) was multiplied by the

length of cut, 1, to give an expression for the steady-state work required in cutting

W 2 Oaqý 2 B si~ai93r 1+- '1 (4.44)= t-4sin tant+3an l 0--

4.3 Comparison of Experiments to Theory

This section compares the experimental results to the theoretical solutions of the

USDH steady-state cutting force Equation 4.41, the single hull plate tearing initiation

solution of (4.43), and the single hull steady-state cutting solution of (4.44).

4.3.1 USDH Comparison

Only two USDH experiments, Tests 2 and 4, exhibited the pure concertina cutting

mode of the plate material under the wedge tip. The remaining tests resulted in mixed

modes of central separation on one side and concertina on the other, or just pure cutting

of both plates. However, the theoretical result of (4.41) is compared to all the

experiments. The detailed calculations are shown in Appendix B.

For the experiments, the cell spacing b, wedge width B. and plate thickness t, are
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b = 41.7mm

B = 76.2mm

t = 0.749 mm

The coefficient of sliding friction is typically 0.15 to 0.3, and is assumed to be j.g=0.3. The

local specific work of fracture in the concertina mode is assumed to be R = 650 N/mm,

which is the average value over the range. The flow stress is given by estimating the

average strain in membrane and bending and using the stress-strain curves of Appendix

C, as follows.

For membrane stretching, the average strain is estimated as

Su(- ) (4.45)

For membrane shear, the average strain is estimated from (4.29) as

0sh = . (4.46)
2

For bending, the average strain is estimated as

t
Eb = -, (4.47)

4r

where r is the bending radius. Assuming the strain contributions are equal. the total

average strain throughout the deformation process is then estimated as

_, ,+__b2_+_E,_+-h 1( t + 1t.+u(n) )

4 =4"4,4"t+rh 4r, 2+ +'(4.48)
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The unknown radii are estimated from inspection of the USDH specimens as

r, = lot
(4.49)

= 3t.

Wedge Semi-angle. 0=45° - The average strain is calculated as

0.025 + 0.083 + 0.282 + 0. 133e= =0.131
4

Using the stress-strain curves from Appendix C, the flow stress is approximately ao = 318

N/mm2. The values are substituted into Equation 4.41 giving a steady-state cutting force

of F= 24,142 N.

Wedge Semi-angle. 0=30' - The average strain is calculated as

0.025 +0.083+0.112+0.090 = 0.078
4

This strain corresponds to a flow stress of ao = 298 N/mm 2. Equation 4.41 yields a

steady-state cutting force ofF = 19,136 N.

The comparison of the above results to the experiments are shown in Figures 4.10

through 4.14 (in the same order as presented in Chapter 3). For each test, a force-

displacement curve and a work-displacement curve is plotted. The mean force is plotted

on the force-displacement curve in the region estimated to be steady-state cutting. The

transition from initiation to steady-state cutting is denoted 1P and is estimated by

inspection of the experimental force-displacement curves. The experimental mean steady-

94



state cutting force F. is calculated by integrating the area under the steady-state portion

of the force curve and then dividing by the length of steady-state cutting interval (1* to If):

If

j F.pdl

F - (4.50)

where F_,, is from the experimental force data. Table 4.1 summarizes the comparison of

experiments and theory. The error is calculated by error(%) = 100(F - F. )/F,.

Table 4.1 Comparison of USDH Experiments and Theory.

Test Wedge Semi- Steady-state Experimental USDH Error Figure
No. angle Transition Mean Force Theory (%) No.

0 I* (m) F,4N) F (N)

1 450 0.15 22,792 24,142 +5.9 4.10

2 450 0.05 23,299 24,142 +3.6 4.11

3 300 0.10 19,128 19,136 +0.04 4.12
4 300 0.075 18,814 19.136 +1.7 4.13
5 450 0.10 27,434 24,142 -12.0 4.14

For Test 5, the semi-angle of 450 was assumed based on the geometry of a circle. Taking

one quadrant of a circle and drawing a line from the two perpendicular radii gives a 450

right triangle. The higher mean force of Test 5 is most likely due to some other cutting

mechanism that takes more work than observed in the previous tests.

(Note that the calculated concertina force (shown in Appendix B) is between

7.704 and 8,046 N. The calculated mean force of Test 6 (Figure 3.6) is 8,647 N. The

correlation is within -7.0 to -10.9%.)
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4.3.2 Single Hull Comparison

This section compares the solutions of initiation and steady-state cutting,

Equations 4.43 and 4.44, respectively, for Tests 7, 8, 9b, and 10 of Chapter 3. Both the

force-displacement and work-displacement curves are shown for each experiment.

The point where Equations 4.43 and 4.44 intersect, denoted 1*, is the transition

from initiation to steady-state cutting. That is, the cutting process follows (4.43) until /*,

at which steady-state cutting ensues, and then (4.44) is followed. This is shown in Figure

415.

In the single hull specimens. three material thicknesses were used each having

different yield and ultimate stresses as shown in the stress-strain curves in Appendix C.

An average flow stress can be determined from Hughes (1988) as

= WAW + C,,FA " + "Y,,pbtp (4.51)Aw + AF + btP

which is in terms of the cross sectional areas of the web, flange, and plate and the

associated flow stress for each material used in these members.

The crack opening displacement parameter is assumed to be 8, = 1.0 (this is

consistent with the work of Wierzbicki and Thomas (1993) who showed that the solution

has weak dependence on the COD parameter).

The average strain throughout the cutting process is assumed to be between 10

and 15%. With this strain range, and using the stress-strain curves of Appendix C, the

average flow stress range using (4.51) is 309 to 318 N/mm 2. Since this range is small, the

flow stress is assumed as the average of the range, a. = 314 N/mm2. Using (4.42), the

equivalent thickness is teq = 2.01 mm. The assumed coefficient of friction is g-= 0.3.
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For each test, a force- and work-displacement graph is shown with (1.8) and

(4.43) plotted, respectively. An average mean force was not found since the experiments

do not reach steady-state cutting. Rather, the accuracy of the theory to the experiments is

based on comparing the work-displacement curves at a length of cut 1f = 0.25m for each

experiment. The transition point, P*, calculated for each experiment was beyond the

extent of cutting showing that none of the experiments reached steady state cutting. This

was also observed in the force-displacement curves. Table 4.2 summarizes the

comparison of experiments and theory.

Table 4.2 Comparison of Single Hull Experiments and Theory.

Test Wedge Steady-state Final Cut Experimental SH Theory Error Figure
No. Semi-angle Transition Length Work Wfl, (Nm) (%) No.

a * (m) I.(m) W(I) (Nm)
7 450 0.641 0.25 3,968 4,455 +12.3 4.16

8 450 0.641 0.25 4,661 4,455 -4.4 4.17

9b 300 0.29 0.25 2,291 3.554 +55.1 4.18

10 450 0.641 0.25 4,433 4,455 +0.5 4.19

The worst case is Test 9b with an error of +55.1%. This is due to a poor

experiment as discussed in Chapter 3. As such, this test result and comparison is

discarded with a recommendation that the test be repeated.

For completeness, the concertina tearing force for the single hull specimen of Test

11 (Figure 3.11) was calculated as Fo,.,. = 7,755N using as inputs
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' =314N / mm2

R=650N/mm

b = 53.34mm

t 1. l30mm.

The mean force in the experiment was calculated as 8,895 N. The accuracy is -12.8%.

4.4 Parametric Study of the USDH Steady-state Cutting Force

Solution

There are four primary parameters that are imbedded in Equation 4.41 and wanrant

a graphical parametric study to determine the cutting force solution behavior. They are

the wedge width, B, wedge semi-angle, 0, and the coefficient of sliding friction, p., and

the plate thickness, t. The non-varying values used were those of section 4.3.1, namely

a, = 318N/mm 2

R=650N/mm

b = 41.7mm.

Wedge Width. B - This parameter was varied from b to 3b, which is the range of

validity of the solution. When B=b, then the wedge cuts between two longitudinals in the

concertina mode only. As B increases, the force increases as would be expected by the

wedge having to deform more plating as it progresses. See Figure 4.20.

Wedge Semi-angle. 0 - This parameter was varied from 20 to 80 degrees. As the

wedge becomes blunter with increasing semi-angle, the force increases rapidly as would
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be expected. This is demonstrated by the increased force using the cylindrical wedge. See

Figure 4.21. Physically this means that for larger 0 some other failure mechanism must

take over, for example, concertina tearing.

Coefficient of Sliding Friction. 1. - The solution has a weak dependence on g. The

force is increased -10% going from g = 0.15 to 0.30. See Figure 4.22.

Plate Thickness-.L - The force increases linearly due to the deformation term of

(4.41) and proportional to tJ'3 due to the concertina tearing term. See Figure 4.23.

4.5 Alternative Failure Modes Assuming USDH Weld Failure

The welds did not fail in any of the USDH cutting experiments. The steady-state

cutting force solution of Equation 4.41 assumes that the longitudinal girders do not

separate from the plating. The longitudinals enter into the solution in the assumed

kinematic model, but not explicitly as a parameter.

Consider that the welds fail and the inner two longitudinal girders separate from

the plating. The next outer set of longitudinals now provide the boundary condition and

the inner two are free to deform independent of the hull plating. If that is the case, other

failure modes must occur. Two possible failure modes are the concertina tearing of the

plating, or the steady-state cutting of the plating.

Concertina Mode - The spacing between the longitudinal girders is now 3b. Using

the following parameters
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~o =310N/mm
2

t = 0.749mm

b= 3x41.7mm = 125.1mm

R =650N / mm

Equation 4.32 is evaluated for the cutting of both plates as F =10,259 N.

Steady-State Cutting - Equation 1.14 is used to evaluate the steady-state cutting

force F. where the wedge width is B = 76.2mm. The flow stress and plate thickness are

the same as above. The steady-state cutting force of both plates for two wedge semi-

angles is evaluated as

"* 0=450: Fss = 20,009N

"* 0=30': Fss = 10,405N.

The force levels for concertina tearing and steady-state plate cutting are less than

the USDH steady-state cutting solution and the experimental mean force level. Therefore,

when considering the failure of welds and other plate cutting modes, the force levels

provide a lower bound to the USDH solution presented in this thesis. Table 4.3 provides a

comparison of results.

Table 4.3 Force Level Comparison for Alternative USDH Failure Modes.

Test Wedge Semi- Concertina Steady-State Experimental USDH
No. angle Force Cutting Force Mean Force Theory

0 F_______ Fss (N) F,(N) F(N)

1 450 10,259 20,009 22,792 24,142

2 450 10,259 20,009 23.299 24,142

3 300 10,259 10,405 19.128 19,136

4 300 10,259 10,405 19.814 19,136
5 450 10,259 20,009 27.434 24,142
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Figure 4.7 Detailed Region of Membrane Stretching.
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Figure 4.10 Test No. 1 (USDH, Wedge #1, 9=45°, Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).

110



30000 T S~~USDH Theory.

25000 0

. 120000
0 -1000 Experimental Mean Force

U.

50007
l*=0.5m

6000 05

0O0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Cut Length (m)

7000

6000

5000-

3000~

2000-

1000-

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Cut Length (in)

Figure 4.11 Test No. 2 (USDH, Wedge #2, 0=450, 3/8 in. Radius Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.12 Test No. 3 (USDH, Wedge #3, 0=30', Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.13 Test No. 4 (USDH., Wedge #4, 0=30', 3/8 in. Radius Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.14 Test No. 5 (USDH, Wedge #5, Cylindrical) - Comparison of

Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.16 Test No. 7 (SH, Wedge #1, 0=450, Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.17 Test No. 8 (SH, Wedge #2, 0=45°, 3/8 in. Radius Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.18 Test No. 9b (SH, Wedge #3, 0=300*, Sharp Tip) - Comparison of
Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.19 Test No. 10 (SH, Wedge #5. Cylindrical) - Comparison of

Experiment and Theory (Force- and Work-Displacement Graphs).
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Figure 4.20 Effect of Wedge Width on USDH Cutting Force (Equation 4.41).
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Figure 4.21 Effect of Wedge Semi-angle on USD11 Cutting Force (Equation 4.4 1).
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Chapter 5

Conclusions and Recommendations for Future Work

5.1 Conclusions

The work in this thesis contributes to the Joint MIT-Industry Program on Tanker

Sak by providing experimental force data for the cutting by a wedge of

Unidirectionally Stiffened Double Hull (USD11) and longitudinally stiffened single hull

models. A theoretical steady-state cutting force solution proposed for the USDH model is

quite accurate, with an error range of -12% to +6% compared to the experimental mean

force. An existing solution for cutting initiation by Thomas and Wierzbicki was applied to

the single hull model giving , esults within -4% to +12% of the experiments when

comparing the final work required at the end of the cut length.

USDH Summary - A theoretical expression for the steady-state cutting force

(Equation 4.41) of a kinematic model of the USDH specimen was formulated using an

upper bound approach. Steady-state cutting occurred at a transition cut length to wedge-

width ratio of approximately I */B = 1.3. The model assumes a concertina tearing mode of

the plate under the wedge tip in the central cell and deformation of the plating in the

adjacent cells. Comparison of the theory to the experiments showed correlation in the

range of -12% to +5.9%. The absolute average error is 4.6%. The worst case of -12.0%

was for a specimen that was cut using a cylindrical wedge. An explanation lies in that an

equivalent wedge semi-angle had to be chosen for use in (4.41). Picking a wedge angle of
53* improves the accuracy of the results to within 0.5%. Another factor may be that there
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are other tearing modes that require more work when using a cylindrical (i.e. blunt)

wedge. This requires further investigation.

A parametric study of the steady state cutting force solution of Equation 4.41 was

conducted. The varied parameters were: wedge width, wedge semi-angle, coefficient of

sliding friction, and hull plate thickness. The solution responds to these variables as

expected (as shown in Figures 4.20 through 4.23). The solution has a weak dependence

on the coefficient of friction.

The contributions of the internal work in membrane stretching and shearing,

bending, and friction are shown in Table 5.1 (the concertina tearing contribution mode is

not included).

Table 5.1 Contribution of Membrane. Bending, and Friction in the USDH Steady-State
Cutting Force Solution (not including concertina tearing).

0=300 0-45*

Membrane 37.3% 55.3%

Bending 28.5% 21.6%

Friction 34.2% 23.1%

Single Hull Summary - The theory developed by Wierzbicki and Thomas (1993)

for the cutting of a single plate was employed by smearing the longitudinal stiffeners and

plate to obtain an equivalent thickness plate. The work in cutting of the experiments and

theory were compared at the final length of cut (0.25m). The correlation between the

theory and experiments was within -4.4% to +12.3%. The average absolute error is 5.7%.

In one test, the theory overpredicted the work 55%, but this test used a specimen that was
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cut in half and did not have the bottom edge fully clamped during the experiment. This

experiment should be repeated.

Steady-state cutting was never reached even after a final cut length to wedge-

width ratio of approximately f1/B = 3.

Paik (1994) recently conducted stiffened plate cutting experiments and also

applied the smearing technique to Wierzbicki and Thomas' equation. The wedge semi-

angle was 300. In Paik's experiments, the length of wedge penetration was shallow (-120

to 160 mm for specimens similar in size to the those used here) and the wedge shoulder

barely made contact with the longitudinals. Thus, the longitudinals were barely deformed.

Wierzbicki and Thomas' solution underestimated the work (measured at a cut length of

120 mm) of Paik's experiments by -32.1% for tq=10.5 mm (tQ7.0 mm), and -19.5% for

teq-=4 .7mm (tP- 3 .4 mm). The equivalent thickness for the specimens in this thesis was

t,-2.01 amm. It appears that the error grows as the equivalent thickness increases.

5.2 Recommendations for Future Work

Future study is needed in the following areas:

E2Wrmental - The experiments in this thesis were all conducted with the specimen at

a zero degree angle of attack from the vertical. This was due to the limitations of the

existing test fixture and universal test machine. To cut the specimens at an angle of

attack, redesign of the fixture and wedge-to-load cell adapter is required to allow a

long cutting stroke while ensuring no excessive bending moments are placed on the

load cell. Also to be considered in the design is an increased length of cut so that

steady state cutting would be observed in all future experiments.
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For the single hull tests, hindsight shows that at least one more test needs to be run

using a 30* wedge. The poor correlation of Test 9 with the theory is due to a poor

experiment, not necessarily that the theory does not hold. This needs to be verified.

Welding - All of the tests exhibited no failure of the electron beam welds (EBW). It is

unrealistic to expect that some of the welds would not fail in actual ship. This has, in

fact, been observed in grounding accidents. McClintock (1994) has identified the

deformation and fracture modes of T-joints as shown in Figure 5.1. Kirkov (1994) has

investigated the tearing mode of weld failure. More research needs to be conducted in

the area of full scale weld failure. Appendix D shows the results of "Lazy-T" bending

tests of small scale EBW T-specimens. This idea could be used as the starting point

for full scale weld testing.

*f= - The USDH steady state cutting force solution of Equation 4.41 needs further

investigation both analytically and using experiments. The formulation needs to be

expanded to include the case where the width of the wedge exceeds the current

spacing limitation of 3b, and the case of cutting at an angle of attack. Experiments

could be run to verify the solution's behavior for cases such as: increased plate

thickness, different plate thicknesses of the inner and outer hulls, larger wedge semi-

angles (e.g. 0 > 45*), cutting of only one plate in the USDH model, cutting the

specimens at an angle of attack, etc. The pros to running more experiments would be

to provide further validation of theory and model the grounding phenomenon more

realistically. The cons lie in that the test specimens are relatively expensive to

fabricate (around $500 each), and that significant effort and expense would be
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required to build new test fixtures and equipment. The cost-benefit would have to be

analyzed to make this decision.

SMaW& - The proposed USDH steady-state force cutting solution and Wierzbicki and

Thomas' plate cutting initiation solution produce scaling laws. Geometric parameters

such as plate thickness t, and longitudinal spacing b, are in fact nonlinear in Equations

4.41 and 1.8. The result is consistent with Atkin's (1988) assertion that simple

geometric scaling (i.e. ,'-scaling) of work does not hold. Future work in comparison

of small scale tests and laws must be made to large scale tests. The issue of scaling

must be thoroughly explored not only for the results of this thesis, but for all the

theoretical formulations supporting the MIT-Industry Program on Tanker SQfeu.

Efforts should be made to obtain experimental results on the cutting of large scale

USDH models when they are conducted (in the future) by NSWC for comparison to

small scale experimental results and theory proposed here.
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Coordinate axes for a T-joint

(a) Tearing (b) Web folding

(c) Web bending (d) Longitudinal shearing

Figure 5.1 Deformation and Fracture Modes of T-Joints.
(McClintock (1994).)
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Appendix A

Operation of the Test Equipment

This appendix discusses the steps required to conduct a plate cutting experiment

It includes the switch lineup of the testing machine and data acquisition program,

initialization of the equipment, and processing of the raw data. The procedure assumes

that the test specimen and frame assembly has been secured in the test machine, and that

the appropriate wedge has been attached to the load cell.

A.1 Instron Universal Test Machine Switch Lineup

The test machine has a number of switches, located on the front, that must be

aligned prior to running a cutting experiment. Power on the Instron by flipping two

switches located at the lower left front panel. The switches are labeled AMPLIDYNE and

MAIN POWER. This should be done first as the machine requires a 30 minute warm up

time. The remaining switch settings are shown in Table Al. Start the switch line up at the

top left side of the machine and move across and down, then move to the right side of the

machine and move across and down.

Table A.1 Instron Universal Test Machine Switch Settings.

FULL SCALE LOAD select desired load value just above
expected full load

MARKER CONTROL manual
PRESET CYCLE COUNTER off
LOAD CELL CT-G
PACING CONTROL normal
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ZERO SUPPRESSION CONTROL out

CHART DRIVE AMPLIFIER off

STRAIN GAGE PRE-AMPLIFIER 10

RANGE

LIMIT CYCLE off

AUTOMATIC off
CYCLE CONTROL manual

CYCLE - LO stop

CYCLE - HI stop
SPEED CONTROL -l-.01
TRAVERSE 1

A.2 Data Acquisition Program Lineup

The data acquisition system consists of a 386 IBM compatible personal computer

(PC), running a National Instruments Data Acquisition (NI-DAQ version 4.2) software

package. The voltage output from the load cell is connected to a volt meter in series with

the computer. The program displays a control panel on the screen that consists of

switches, toggles and graphical output. The settings can be changed by using the mouse

to reposition switches, much like a W'mdows' application.

After turning on the computer, the program is accessed by selecting the

dos_data aq icon from the NI-DAQ window. The first screen that appears should have

BOARD: NUMBER I and BOARD USED: LAB-PC selected. From the toolbar select

INSTRUMENTS, and from the menu select STRIP CHART AND DATA LOGGER.

This will bring up the control panel screen.

It is from the control panel screen that most of the settings are selected. The

output voltages from the load cell can be seen real time on the screen. Set the limits of the

y-axis by changing the values of YMAX and YMIN and clicking OK. Suggested values

are 0.1 and -0.5 for expected forces of 5k-10k N. The limits settings in no way affect the
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actual data being recorded in the computer. On the right side of the screen, set the toggle

switch to CONSECUTIVE. Click on SAVE TO FILE. Ensure that the circle changes to

green (if it does not show green, then no data will be saved). Click on CHAN SETUP.

Another window will be displayed. Select the block showing CHANNEL 0, and type

LOAD CELL. Click OK. The previous control panel will then be displayed. Change the

value of SAMPLE RATE to 40, and the value of AVERAGE to 40. Click the box next to

the word AVERAGE.

A.3 Equipment Initialization

The system must be initialized each time after powering up the machine or if a

different wedge is installed. The initialization consists of calibrating the Instron chart

recorder to the expected force range. The voltage outputs at the zero and full scale of the

load must be noted. These endpoint values are very important in order to convert the

voltages to force. The chart recorder gives a hard copy output of load versus deflection

which is used to verify the results of the data acquisition program. The chart calibration is

somewhat of an art and can only be mastered by experience. The two toggle switches

labeled CHART and PEN must be positioned on. To calibrate, set the FULL SCALE

LOAD to 500 lb. Then using the knob labeled ZERO, position the chart pen to the x-axis

on the far left side of the graph paper (the x-axis is vertical, and the y-axis is horizontal

while the paper is in the recorder). Push the button next to the knob. The pen should stay

at zero. If not adjust the knob again to put the pen on zero. Continue this until the pen

does not move off zero when the button is pushed. Next. push and hold the button under

the CALIBRATION label. The pen will move to the right and should stop on the

rightmost edge of the graph. (Full scale on the y-axis is ten inches, with a grid spacing of

one-inch.) Most likely the pen will over or under shoot the edge. If this happens, turn the
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knob (next to the button) while continuing to hold the button to bring the pen to the graph

edge. Now, release the button, the pen should move back to the right and stop on zero. If

it does not land on zero, repeat the entire process until the pen is calibrated to the zero

and full scale. This is an iterative process. Now select 1000 lb on the FULL SCALE

LOAD, and push the button under CALIBRATION. The pen should go half way across

the graph paper. Continue selecting the loads and checking the calibration up to the

desired load.

The preceding procedure was to calibrate for compression on the load cell. If

tension is applied to the load cell (as in a tensile test), follow the same procedure. except

the zero should be on the right side of the graph and full scale on the left side of the

graph. Switch CHART off until ready to begin the experiment.

A.3.1 Setting the Chart Speed

The rate of paper advance can be set to a desired speed by repositioning the gears

located inside the chart recorder. The chart recorder is on hinges and can be opened by

releasing the locking lever labeled A behind the glass door. Swing open the chart recorder

to reveal a matrix showing the combinations of gear positions and the associated speeds.

Position the gears to the desired chart speed. A satisfactory chart speed is 10 inches per

minute.

A.4 Starting the Experiment

The equipment is ready to start the experiment. To begin, first click the

START/STOP button on the NI-DAQ control panel. The program is now ready to receive

input data. On the Instron, switch CHART on to begin the chart recorder. Shut the small
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door next to the SPEED CONTROL buttons. This is a safety interlock that allows the test

machine head to travel. Press the UP button to cause the head to move up. As loads are

applied to the test specimen, the chart and NI-DAQ screen should both plotting data.

Once the experiment is complete, press the STOP button on the Instron to stop the

machine head travel. Switch CHART to off, and press ENTER on the keyboard to stop

the data acquisition program. A new menu will appear on the screen. Position the cursor

on the file name block and rename the file (with a unique name that describes the test )

ensuring the extension is ".txt". The data is now saved and ready for processing. Press the

ENTER key and click on QUIT to exit NI-DAQ.

A.5 Data Reduction

The file generated from the NI-DAQ program is a standard ASCII text file which

can be read into a spreadsheet package. For completeness, this section describes how to

read the text file into Microsoft Excel. which is used to process the raw data.

From the main window, open the Microsoft Word program. Click on FILE and

select OPEN. Change the directory to C:\NIDAQDOS\DAQWARE. Click on LIST OF

FILE TYPES and select *.txt. This should display the data file name previously saved.

An icon will ask to convert the file, click OK. The data file should appear on the screen.

Delete the first few lines of zero voltage readings keeping only one zero voltage reading

(recall that the zero voltage should have been noted during calibration). From the EDIT

menu click on SELECT ALL. The data should now be highlighted. From TABLE, select

CONVERT TEXT TO TABLE. Two columns will appear. The first contains the test data,

and the second is blank. To clear the second column, choose TABLE. then SELECT

COLUMN, and press the delete key. Finally, from the EDIT menu. choose SELECT
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ALL, then COPY. At this point, the file is saved in the buffer and ready for import to

Excel.

After exiting Word and bringing up the Excel spreadsheet, select the EDIT menu

and choose PASTE. The data should be displayed in the spreadsheet. The data is ready

for processing.
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Appendix B

Supporting Calculations

This appendix provides supporting calculations for Chapter 4. Specifically shown

are the details of Equation 4.23, the numerical evaluation of the USDH steady state

cutting force expression (Equation 4.41), and a comparison of the fully plastic torsion of a

stiffener to the fully plastic bending moments of a stiffener, plate, and stiffener/plate

combination.

B.1 Calculation of Displacements Ua and Ub

The calculations of the displacements given by Equation 4.23 are shown in this

section. The geometry used in these calculations is shown in Figure B.l

N - The displacement u, is given by

u,. = OA-OB. (B.1)

The distance OA is known from the geometry and is given by

cos 0

The distance OB is determined from geometry, and OC is the projection of OA through

the angle m , as
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OB = •_•_

cos a,

(B.2)

OA = I

cos 0 cos a2

Substitution of (B.2) in (B. 1) gives the displacement

Ua = )(4.23a)ua = cosO cosaz2 cO/

Dispacment - Referring to Figure B.2, let

x, = OE

X2 = EC

Y = BE

y2 = ED

A-- = BD
2

From the geometry, u, can be found by the expression

u~=2+X;T~ (B.3)z = CD = VY•+ _2. B3

The lengths y, and y2 are related by
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A Y + y2, (B.4)

where

Y= sina 2  (B.5)
cosa,

which upon rearrangement of (B.4) gives

A ~
Y2 = -A " sina,. (B.6)2 Cosa,

The relation between x, and x, is

x1 + X2 cosO (B.7)

The length x, is found to be related to y, by

L = tana 2 . (B.8)
X1

Substitution of (B.5) into (B.8), and then that result into (B.7) gives an expression for x,

as

, I Cosa,2 (B.9)
= co1O Cos3 ,
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Finally, substitution of (B.6) and (B.9) into (B.3) gives the displacement

(A _,; sinaI )2  ' I cosa2 (4.23b)

2 +a €cosO cosalJ,)

B.2 Evaluation of the USDH Steady-State Cutting Force Equation

The values of the various terms to get to the final result of Equation 4.41 are given

in Table B. 1. The final result is for the cutting of both plates of the USDH specimen. The

intermediate values in the table are for only one deformed segment. The forces in bending

and membrane are obtained by dividing through by the velocity, V. The input parameters

are given as follows

Cell spacing: b = 41.7 nm

Wedge Width: B = 76.2 mm

Plate Thickness: t = 0.749 mm

Coefficient of Friction: g. = 0.3

Specific Work of Fracture: R = 650 N/mm
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Table B. 1 USDH Steady-State Cutting Force Equation Values.

Variable 0-300 0-450 Equato- No.

A 17.25 mm 17.25 mm 4.16

29.88 mm 17.25 mm 4.17

16.10 26.60 4.17

(2 13.90 18.40 4.17

U2 4.44 mm 6.43 mm 4.23

uh 4.47 mm 6.60 mm 4.23

u_ _ 3.34 mm 4.87 mm 4.26

rl 7.49 mm 7.49 mm 4.48

r' 2.25 mm 2.25 mm 4.48

6ve 0.073 0.131 4.47

CFO 298 N/mm 2  318 N/mm2  App C

Fb 815 N 870 N 4.20

Fst. 497 N 1338 N 4.27

FSh 569 N 887 N 4.31

Fn 1881 N 3095 N 4.34

Ff 977 N 929 N 4.33

Fcnertin_ 3852 N 4023 N 4.32

F 19136 N 24142 N 4.41

B.3 Fully Plastic Torsion of the Stiffener and Bending of the Stiffener

and Plate

This section estimates and compares the fully plastic twisting moment of a

stiffener, and the fully plastic bending moment of the plate, stiffener, and plate/stiffener

combination.
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B3.1 Fully Plastic Torsion of the Stiffener

The fully plastic torsion of a stiffener can be estimated using the sand heap

analogy, Johnson and Mellor (1983). Figure B.2 shows the geometry of the stiffener and

the shear stress, k, from the sand heap analogy. The actual shear flow around the comer

near the flange/web joint is parabolic, but the twisting moment contribution in the shaded

area is ignored since the moment arm and area are both small compared to the other

sections.

The moment about the point 0 is expressed as

T. = kAI• + 2kAl4 + 2kA,,,1 + kA /4 + 2kAr4. (B.IO)

The moment arm from the origin, 0, to the centroidal axis. Y, of each area section is

found using the following relationship

(B.11)

The section areas are found from geometry to be

A, =(2bf -tf)

A,, =t (B.12)

AM,,, i{bf - t,,- f 4
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and the moment arms are found using (B. 11) as

tf ((f -tJ

t 22tb21 3 )b -L
14)

2-±)

Substitution of (B.12) and (B.13) into (B.10) results in an approximation for the fuMly

plastic torsion of the stiffener as

T. k[IL bf JL + (bf w..L+.{: +b. -!)+L (b-.)]

(B.14)

Now, taking the values for the stiffener from Table 2.4 and letting

k--!!34/ram 2  Equation B.3 is evaluated to be To= 4.9Nm.
T 34
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B.3.2 Fully Plastic Bending Moment of the Stiffener, Plate, and

Stiffener/Plate Combination

The fully plastic bending moments of the stiffener and the stiffener/plate

combination are calculated using the method described by Hughes (1988) in Ship

Structural Design3.

Siffener Qly - The following describes the method to find the fully plastic

bending - oment:

First. the following quantities are calculated from the geometry of the stiffener:

A, + Af
2 A .

C2 =CI2 -C, +0.5

g = Cib.z, =-A (b. -g +o0.5, ,
Z. = Ab.C 2

The plastic section modulus for the stiffener is given as

z, =zf +z,.

Using this result, the fully plastic bending moment for the stiffener is

Ms = CY Zp.

3 Section 16.1, page 510.
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Letting the yield stress be cr, =175 N /mm, estimated from the stress-strain curves in

Appendix C, the fully plastic bending moment for the stiffener is Ms = 84.3Nm.

PEaM OnIx - The fully plastic bending moment for the plate alone, with width b, is

given as

S= 2 G

which on substitution of the values gives M, = 6.2 Nm.

Stiffener/Plate Combination - The equations for the stiffener/plate section are

given as

AP - A. + Af
2AP

C2 =c -C, +0.5
g = Clip
gZ = AC,(b. +g+O.5t,)

Z, = A,(0.5b, + g)

Z, = A,.t,C2

The fully plastic section modulus now has the plate section modulus added to give

ZP =Zf+z. +z Zp,
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and the fully plastic bending moment for the plate/stiffener combination is

Ms1P = oyZp = 214.9Nm.

The results of the above calculations are summarized in Table B.2. Comparison of

the four results shows that the plastic bending of the plate alone, and the plastic twisting

of the stiffener alone are of the same order of magnitude. The plastic bending of the

stiffener/plate combination is nearly two orders of magnitude higher than the torsion of

the stiffener and bending of the plate, and nearly one order of magnitude higher than the

bending of the stiffener.

This order of magnitude analysis shows that the stiffener and plate cannot be

modeled independently, but must be modeled as a unit. The complex bending and

twisting of the single hull specimens after cutting by a wedge proved to be beyond the

scope of this thesis.

B.2 Fully Plastic Moments of Stiffener and Plate Structural Members.

Stmetural Unit Plastic

Moment (Nm)

Stiffener (Torsion) 4.9

Stiffener (Bending) 84.3

Plate (Bending) 6.2

Stiffener/Plate (Bending) 214.9
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Figure B. 1 Geometry for Calculation of Displacments uo and ub.
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Figure B.2 Sand Heap Analogy for Stiffener.
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Appendix C

Tensile Test Results

Tensile tests results are reported here for the three material thickness used in

fabrication of the single and double hull models4 . A total of twelve specimens were

tested: four for each thickness with two each in the transverse and longitudinal direction

to the roll axis. The tests were conducted in accordance with ASTM specification A370.

The test specimen dimensions are shown in Figure C. 1. The reported results include yield

strength (YS), tensile strength (TS), percent elongation, and the accompanying

engineering stress-strain curves, as shown in Table C. I and Figures C.2 - C. 13.

Table C.I Tensile Test Specimen Properties.

Specimen Thickness Orientation 0.2% YS TS % Elongation
No. (mm) (from roll axis) (N/mm2) (N/mm2)

1 0.749 00 244.8 328.9 41.3

2 0.749 00 180.0 329.6 41.0
3 0.749 900 175.8 319.9 41.3
4 0.749 900 176.5 319.2 39.4
5 1.130 90P 211.7 332.3 38.5

6 1.130 900 213.1 334.4 37.3
7 1.130 00 229.6 338.5 38.0

8 1.130 00 207.5 333.7 38.5
9 1.829 00 153.1 299.9 45.9

10 1.829 0o 137.2 280.6 45.8
11 1.829 90g 145.5 282.7 44.7

12 1.829 900 146.2 282.7 45.0

Conversion Factor: 0.006895 (N/mm 2) = I psi.

4 The work in this appendix was done in collaboration with P. Little.
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The results of Table C. 1 can be averaged for each thickness as shown in Table

C.2.

Table C.2 Tensile Test Specimen Averaged Properties.

Thickness Average Average Average
(mm) 0.2% YS TS % Elongation

(N/ram 2) (N/mm 2
_)

0.749 194.3 324.4 40.8
1.130 215.5 334.8 38.1
1.829 145.5 286.5 45.4
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Figure C.I ASTM A370 Flat Tensile Specimen.
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Figure C.2 Specimen 1 - Engineering Stress-Strain Curve
(t = 0.749 ram. 0* from roll axis).
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Figure C.3 Specimen 2 - Engineering Stress-Strain Curve
(t = 0.749 mm. 0* from roll axis).
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Figure C.4 Specimen 3 - Engineering Stress-Strain Curve
(t 0.749 mm, 90 from roll axis).
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Figure C.5 Specimen 4 - Engineering Stress-Strain Curve
(t = 0.749 mm, 900 from roll axis).
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Figure C.6 Specimen 5 - Engineering Stress-Strain Curve
(t = 1.130 mm. 900 from roll axis).
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Figure C.7 Specimen 6 - Engineering Stress-Strain Curve
(t = 1.130 mm, 900 from roll axis).
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Figure C.8 Specimen 7 - Engineering Stress-Strain Curve
(t- 1.130 rm. 0* from roll axis).
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Figure C.9 Specimen 8 - Engineering Stress-Strain Curve
(t = 1.130 mm, 0' from roll axis).
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Figure C. 10 Specimen 9 - Engineering Stress-Strain Curve
(t = 1.829 mm, 0* from roll axis).
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Figure C. 11 Specimen 10 - Engineering Stress-Strain Curve
(t = 1.829 mm. 0* from roll axis).
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Figure C.12 Specimen 11 - Engineering Stress-Strain Curve
(t = 1.829 mm. 900 from roll axis).
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Figure C. 13 Specimen 12 - Engineering Stress-Strain Curve
(t = 1.829 mm. 900 from roll axis).
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Appendix D

Lazy-T Weld Bend Tests

D.1 Purpose

This appendix provides information on Lazy-T weld bend tests conducted to

investigate the strength of welds made using the electron beam welding (EBW) process.

A secondary purpose of the tests was to provide information to assist in the development

of full scale Lazy-T tests using material thicknesses commonly found in oil tanker design.

The work in this appendix was done in collaboration with P. Little.

The Lazy-T test was suggested by McClintock (1994) as a means for testing T-

joints in the web folding mode of deformation and fracture. Figure 5.1 illustrates the weld

failure modes proposed by McClintock (1994). The strength of EBW T-joints was

questioned when the EBW joints did not fall even when subject large deformations

during the scale model testing.

D.2 Limit Load Calculation

Figure D.1 shows a free body diagram for the T-joints tested. The load, P, is

applied by the crosshead of a universal testing machine. Teflon tape was positioned under

points A and B to minimize sliding friction.

Prior to conducting tests, a calculation of the limit load was made to determine the

test equipment size needed. From the geometry of the problem, the following is

determined as
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b
tarf ( j ). (D.I)

Summing moments about point A gives;

P Pb sin = 0. (D.2)P"cos--F

Defining b as the depth of the specimen (into the page), a7. as the tensile strength of the

material and t, as the thickness of the web gives the fully plastic bending moment

MP = ba-stw (D.3)
4

Referring to the geometry in Figure D.2 where u is the coefficient of sliding friction, the

bending moment due to web folding at the weld joint is

M= P• cosO - gP sinO. (D.4)

Setting the fully plastic bending moment, Equation D.3, equal to the bending moment at

the weld joint, Equation D.4, results in

b°'nt: (D.5)
PAk(cosO -. usinO) = 4

Substituting (D.2) into (D.5) and solving yields the limit load

= 4bf sinO cosO(cosO - y sin)" (D.6)
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D.3 Test Results

A total of three t-stiffeners were tested. Table D.1 lists the dimensions of the

specimens tested. For the calculations, values of ars = 324 N / mm2  and a = 03 were

used.

Table D.1 T-Stiffener Dimensions.

Specimen hw bf Depth, b Thickness Calculated

(Inches) (Inches) (Inches) (Inches) Limit Load, N

1 1.644 1.5 0.482 0.029 47.7

2 1.644 1.5 0.465 0.029 46.0

3 1.647 1.5 0.499 0.029 49.4

Testing was performed on a Instron 4201 universal testing machine in the

Remergence Laboratory at MIT. Based upon the calculated limit load, the 500 N load cell

was selected for use. Unfortunately, it was inoperative and the tests were conducted with

the 5 kN load cell instead. A total three Lazy-T tests were performed. The force

displacement graphs are included as Figure D.3 through D.5.

During the Lazy-T tests, the crosshead direction was reversed several times in

order to observe the effect of friction. The results of the reversal are depicted in Figures

D.3 through D.S. As shown, there is evidence of 'sticking' during the crosshead motion.

In spite of the sticking evident in the hysteresis loops, the contribution of sliding friction

was determined to be not significant.

As shown in the figures the force starts to rise sharply when the crosshead

displacement exceeds 25 umm. This coincides with the flattening of the T-joint. The same
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feature was observed on all tests, namely, the weld did not fail. A close examination of

the crushed samples indicated the bending took place in the web.

D.4 Lazy-T Test Conclusions

Several conclusions were drawn from the Lazy-T testing. First, Equation D.6

provided an estimate of the limit load which was within 20% of that observed

experimentally. Second, any welded joint should be strong enough so that the

deformation occurs in the base metal, not the weld itself. In this case, EBW exhibited

sufficient strength since the deformation occurred in the web on all tests. For future

planning of full-scale Lazy-T tests, it appears as if friction is not a significant factor

provided steps are taken to minimize its effect. The sticking observed during the

compliance tests and in the hysteresis loops may be due to off center loading. An

alternative may be the Lazy-L test, where the flange is trimmed at the weld joint and the

legs are of equal length. The loading on this type of specimen would be symmetric

throughout the test. Finally, the analysis can be extended so that the theoretical load is

calculated as a function of cross-head displacement.
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Figure D.1 T-Stiffener Geometry and Free Body Diagram.
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Figure D.2 Bending Moment at the Web Joint.
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Figure D.3 Lazy-T Test Results for Specimen #1.
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Figure D.4 Lazy-T Test Results for Specimen # 2.

164



607
Limit Load

,,40
z

20
•- 20

10

0
0 5 10 15 20

Displacement (mm)

Figure D.5 Lazy-T Test Results for Test #3.
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